Abstract:
An organic light emitting display device includes a display panel including a plurality of pixels, a scan driver configured to provide a scan signal to the pixels, a data driver configured to provide a data signal to the pixels, a sensing circuit configured to sense a sensing current flowing through the pixels according to a sensing reference voltage applied to the pixels, and a controller configured to calculate a sensing current variation from the sensing current, and configured to adjust the sensing current variation based on a variation data of the pixels to compensate an input image data.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
Abstract:
An organic light emitting diode display includes a substrate, a scan line on the substrate for transferring a scan signal, a data line crossing the scan line and for transferring a data signal, a driving voltage line crossing the scan line and for transferring a driving voltage, a switching thin film transistor coupled to the scan line and the data line, a driving thin film transistor coupled to a switching drain electrode of the switching thin film transistor, and an organic light emitting diode (OLED) coupled to a driving drain electrode of the driving thin film transistor, wherein a driving semiconductor layer of the driving thin film transistor is bent and in a plane substantially parallel to the substrate.
Abstract:
A thin film deposition apparatus, a deposition method using the same, and a method of manufacturing an organic light-emitting display apparatus by using the apparatus are provided. A thin film deposition apparatus is provided that includes a chamber containing a substrate holder on which a substrate is mounted, a plurality of rotary shaft units that change rotation and an inclination angle of the substrate holder, and a target unit that supplies a thin film material for formation on the substrate.
Abstract:
An organic light-emitting display apparatus and a method of manufacturing the organic light-emitting display apparatus. The organic light-emitting display apparatus includes a substrate; a display unit on the substrate; and an encapsulating layer encapsulating the display unit. The encapsulating layer is formed of a low-temperature viscosity transition inorganic material. The encapsulating layer includes nitrogen.
Abstract:
A data processing method that includes: detecting a maximum data cell having a maximum value and a minimum data cell having a minimum value in a compression unit cell; converting the maximum data cell and the minimum data cell into a non-compressed data format; converting remaining data cells of the compression unit cell except for the maximum and minimum data cells into a compressed data format; and generating stream data in which the converted data cells are arranged, wherein the non-compressed data format and the compressed data format include a header field with different values and the non-compressed data format includes a data field corresponding to the value of the converted maximum or minimum data cell.
Abstract:
A method of manufacturing an organic light-emitting display apparatus includes disposing a low melting glass (LMG) thin film to cover a display unit disposed on a substrate, and radiating an energy beam onto the LMG thin film. Accordingly, an encapsulation layer having excellent sealing characteristics may be rapidly formed, and thus manufacturing process efficiency and product reliability may be improved.
Abstract:
A tablet for a plasma coating system having a first part that includes a first material having a first sublimation point at a first pressure and a second part that is disposed on the first part and comprises a second material having a second melting point at the first pressure, wherein the second melting point is lower than the first sublimation point.
Abstract:
In one aspect, a display panel and a manufacturing method of the same is provided. The display panel includes a non-emission region layer having a plurality of emission regions and a connection region that is open to connect adjacent emission regions; an organic emission layer formed in each of the plurality of emission regions; a counter electrode formed in the emission regions and the connection region; and an encapsulation layer formed on the counter electrode.
Abstract:
An organic light emitting display device includes a first substrate, a second substrate opposing the first substrate, a plurality of organic light emitting diodes disposed on the first substrate, a protection layer covering the organic light emitting diodes, an inner filling layer disposed between the protection layer and the second substrate, the inner filling layer including a hardened monomer material, and a sealing member located between the first substrate and the second substrate to seal between the first substrate and the second substrate, the sealing member enclosing the organic light emitting diodes, the protection layer, and the inner filling layer.