Abstract:
A content visualizing device and method that may adjust content based on a distance to an object so as to maintain a projection plane and prevent an overlap with the object in front is provided.
Abstract:
An image processing method includes acquiring a feature defining a distribution of similar forms in a first image; and restoring a hole included in a second image based on the feature. The feature may include structure information on a background included in the first image. The restoring may include determining, based on the feature, candidate blocks corresponding to a restoration block and restoring the restoration block based on the candidate blocks. The restoration block may include at least a portion of the hole.
Abstract:
Provided is an image processing apparatus. A region of interest (ROI) configuration unit may generate a visual attention map according to a visual attention of a human in correspondence to an input three dimensional (3D) image. A disparity adjustment unit may adjust disparity information, included in the input 3D image, using the visual attention map. Using the disparity information adjusted result, a 3D image having a decreased visual fatigue may be generated and be displayed.
Abstract:
An apparatus for calibrating a multiview image may extract feature points from the multiview image and perform image calibration based on the extracted feature points, track corresponding feature points in temporally successive image frames of a first view image, and perform the image calibration based on pairs of corresponding feature points between the feature points tracked from the first view image and feature points of a second view image.
Abstract:
A method and apparatus for processing an image are provided in which an image including a hole region may be downscaled, prior to restoration of a hole pixel. The downscaled hole region may be restored, and a scale of the restored hole region may be converted to an original scale thereof, by upscaling.
Abstract:
An image processing apparatus including a region of interest (ROI) configuration unit may generate a visual attention map according to visual characteristics of a human in relation to an input three dimensional (3D) image. A disparity adjustment unit may adjust disparity information, included in the input 3D image, using the visual attention map. Using the disparity information adjusted result, a 3D image may be generated and displayed which reduces a level of visual fatigue a user may experience in viewing the 3D image.
Abstract:
Disclosed is a color transform method performed by an electronic device that includes generating an initial color transformed image by performing color transform on a raw image, determine noise amplification degrees indicating degrees to which noise included in the raw image is amplified by the color transform, processing the determined noise amplification degrees, and generating a final color transformed image by filtering the generated initial color transformed image using the processed noise amplification degrees and at least one of the raw image or luminance information of the raw image.
Abstract:
An image sensor includes a plurality of lens elements, each lens element of the plurality of lens elements including a plurality of scatterers arranged to concentrate light incident on the image sensor; and a sensing element configured to sense light passing through the plurality of lens elements, wherein one lens element of the plurality of lens elements has a first focal length that is different from a second focal length of another lens element of the plurality of lens elements and is separated from the sensing element by the first focal length.
Abstract:
A method of driving a lens array camera may include simultaneously driving a first group of sensing elements from among a plurality of sensing elements, each sensing element from among the first group of sensing elements corresponding to a same original signal viewpoint, wherein the plurality of sensing elements is included in a sensor corresponding to the lens array camera including N rows of N lenses, N being a natural number.
Abstract:
An imaging device may code light, passing through an imaging optical lens arranged in a multi-lens array (MLA), and may transmit the light to a sensing element, and the sensing element may restore an image based on sensed information.