摘要:
An optical method and system sense and identify a foreign particle in a gaseous environment. A light source generates light. An electrically-conductive sheet has an array of holes formed through the sheet. Each hole has a diameter that is less than one quarter of the light's wavelength. The sheet is positioned relative to the light source such that the light is incident on one face of the sheet. An optical detector is positioned adjacent the sheet's opposing face and is spaced apart therefrom such that a gaseous environment is adapted to be disposed therebetween. Alterations in the light pattern detected by the optical detector indicate the presence of a foreign particle in the holes or on the sheet, while a laser induced fluorescence (LIF) signature associated with the foreign particle indicates the identity of the foreign particle.
摘要:
An optical method and system sense and identify a foreign particle in a gaseous environment. A light source generates light. An electrically-conductive sheet has an array of holes formed through the sheet. Each hole has a diameter that is less than one quarter of the light's wavelength. The sheet is positioned relative to the light source such that the light is incident on one face of the sheet. An optical detector is positioned adjacent the sheet's opposing face and is spaced apart therefrom such that a gaseous environment is adapted to be disposed therebetween. Alterations in the light pattern detected by the optical detector indicate the presence of a foreign particle in the holes or on the sheet, while a laser induced fluorescence (LIF) signature associated with the foreign particle indicates the identity of the foreign particle.
摘要:
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
摘要:
Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.
摘要:
Carbon nanotubes (CNTs) are mixed in an aqueous buffer solution that includes a buffer material having a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group. The resulting solution includes the CNTs dispersed therein. Metal-core ferritins are then mixed into the resulting solution where at least a portion of the ferritins are coupled to the CNTs.
摘要:
A modified Nuclear Thermionic Avalanche Cell (NTAC) to reduce back-scatter losses of avalanche electrons emitted by a NTAC. The present invention provides a novel topological surface configuration for electron collector layers in NTAC devices. Sawtooth configurations of the surface configurations of electron collector layers allow for the recapture of back-scattered electrons, increasing the efficiency of NTAC devices as well as reducing thermal loading and increasing NTAC efficiency.
摘要:
Various embodiments provide Molten Target Sputtering (MTS) methods and devices. The various embodiments may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules for better crystal formation at low temperature operation. The various embodiment MTS methods and devices may enable the growth of a single crystal Si1-xGex film on a substrate heated to less than about 500° C. The various embodiment MTS methods and devices may provide increases in the kinetic energy, increases in the energy latency, and/or increases in the flux density of molecules without requiring the addition of extra systems.