Abstract:
A storage device includes a storage controller configured to operate a heat-assisted magnetic recording head to write data to a band of consecutive data tracks in a consecutive track order while selectively alternating a power level of the heat source when writing to some data tracks of the band.
Abstract:
Data is written to a recording medium via a read/write head. Subsequent to the writing, the data is read via a read transducer of a read/write head. An instability indicator is derived based on measurements performed while the reading the data. If the instability indicator exceeds a threshold, a current applied to a write coil of the read/write head is changed for subsequent write operations.
Abstract:
A system may compensate for skew in a patterned medium, such as but not limited to a self-assembling bit patterned medium, with a write pole separated from a data storage medium by an air bearing. The write pole being connected to a controller. The data storage medium can have a plurality of magnetic islands arranged in data tracks with each data track having a track center. The write pole may be selectively shifted from the track center by the controller to compensate for a skewed write pole configuration.
Abstract:
A storage device includes a controller that directs incoming data to a storage location based on a capacity of a region or surface of a magnetic disc. According to one implementation, the storage device controller writes new data to data tracks in a first series of data tracks on the magnetic disc until a capacity condition is satisfied. Once the capacity condition is satisfied, the storage device controller writes new data to a second series of data tracks on the storage medium that are interlaced with data tracks of the first series.
Abstract:
Systems and methods for determining a relationship between write fault threshold and temperature are described. The systems and methods include measuring an operating temperature of the storage device, determining a current operating temperature of the storage device, determining whether the current operating temperature of the storage device satisfies a temperature threshold, and upon determining the current operating temperature of the storage device satisfies the temperature threshold, modifying a write fault threshold associated with a data track of the storage device.
Abstract:
A storage device includes a data degradation management module that tracks a risk of data degradation by incrementing a track write counter of a first data track responsive to each data write command to a second data track, such as a data track directly adjacent to the first data track. If a count of the track write counter exceeds a count threshold, one or more post-write scan operations are performed to assess and/or repair data degradation of the first data track.
Abstract:
A heat-assisted magnetic recording (HAMR) device includes transducer head comprising a heat source and a writer. The HAMR device further includes a power controller configured to selectively power on and off the heat source independent of current flowing through a write coil of the writer based on a position of the transducer head relative to an adjacent rotating media.
Abstract:
A perpendicular magnetic recording medium adapted for high recording density and high data recording rate comprises a non-magnetic substrate having at least one surface with a layer stack formed thereon, the layer stack including a perpendicular recording layer containing a plurality of columnar-shaped magnetic grains extending perpendicularly to the substrate surface for a length, with a first end distal the surface and a second end proximal the surface, wherein each of the magnetic grains has: (1) a gradient of perpendicular magnetic coercivity Hk extending along its length between the first end and second ends; and (2) predetermined local exchange coupling strengths along the length.
Abstract:
A heat-assisted magnetic recording (HAMR) device includes a controller that selects a power for operating a heat source for a data write to a target data track. According to one implementation, the controller selects the power based on an assessment of whether the target data track is bounded by any data-storing tracks. A first power is selected when the data track is not bounded by any data-storing tracks and a second lower power is selected when the data track is bounded by one or more data-storing tracks. In another implementation, the controller writes to different partitioned regions of a storage media with different powers of the heat source. The controller selects a storage location for data based on an expected write error rate and environmental conditions within the HAMR device.
Abstract:
Method and apparatus for controlling the position of a control object in a closed loop control system, such as a servo control system used in a data storage device. In some embodiments, spaced apart first and second data tracks are written to a rotatable data recording medium without using repeated runout (RRO) compensation values to correct for RRO error in servo data written to the medium. A third data track is subsequently written so as to be interspersed between and partially overlap the first and second data tracks. The third data track is written using a set of RRO compensation values to correct for the RRO error in the servo data.