Titanium nitride anode for use in organic light emitting devices
    34.
    发明授权
    Titanium nitride anode for use in organic light emitting devices 有权
    用于有机发光器件的氮化钛阳极

    公开(公告)号:US06597110B1

    公开(公告)日:2003-07-22

    申请号:US09568336

    申请日:2000-05-10

    IPC分类号: H05B3300

    摘要: An organic light emitting device (“OLED”), including a substrate, a conductive nitride electrode, an organic film, and a second conductive electrode. The conductive nitride films can be transparent or opaque depending on their thickness. The OLEDs provide high brightness and efficiency and can be incorporated into electronic devices, including computers, monitors, televisions, large area wall screens, theater screens, stadium screens, billboards, signs, vehicles, printers, telecommunications devices, and telephones.

    摘要翻译: 包括基板,导电氮化物电极,有机膜和第二导电电极的有机发光器件(“OLED”)。 导电氮化物膜根据其厚度可以是透明或不透明的。 OLED提供高亮度和高效率,并且可以并入电子设备,包括计算机,显示器,电视机,大面积墙壁屏幕,剧院屏幕,体育场馆屏幕,广告牌,标牌,车辆,打印机,电信设备和电话。

    Color-tunable organic light emitting devices
    40.
    发明授权
    Color-tunable organic light emitting devices 有权
    彩色可调谐有机发光装置

    公开(公告)号:US06312836B1

    公开(公告)日:2001-11-06

    申请号:US09207799

    申请日:1998-12-09

    IPC分类号: H05B3314

    摘要: A new method for tuning the emission spectrum of OLEDs while retaining a high luminescence efficiency wherein the emission spectrum of a polar luminescent molecule is wavelength shifted by as much as 70 nm when doped into a conductive host in a vacuum-deposited molecular organic light emitting device. The effect may be attributed to changes in the average dipole moment of the host thin film that are induced by the addition of highly dipolar dopant molecules. This phenomenon may be referred to as a “solid state solvation effect” in analogy to similar effects previously identified in solution chemistry. In experiments using singly doped devices, different concentrations of a polar laser dye known as DCM2 are doped in non-polar triaryl amine conductive host films. In these experiments, DCM2 performs the dual role of functioning both as the luminescent center and as the source of the increased spatially averaged dipole moment. In a second set of experiments using dual-doped devices, DCM2 is employed only as the luminescent center in a non-polar host, while a second polar dopant, aluminum tris(8-hydroxyquinoline) (Alq3), is introduced to generate the local dipole moment. By changing the concentration of Alq3, while keeping the DCM2 concentration fixed, the OLED emission may be tuned over a range of 30 nm. For the singly doped devices, the external luminescence quantum efficiency, &eegr;, decreases with dopant concentration due to aggregation induced quenching. However, for the dual-doped devices, &eegr; increases with an increase in the bathochromic shift.

    摘要翻译: 一种用于调节OLED的发射光谱同时保持高发光效率的新方法,其中当在真空沉积的分子有机发光器件中掺杂到导电主体中时,极化发光分子的发射光谱波长偏移多达70nm 。 该效应可归因于通过添加高度偶极掺杂剂分子而诱导的主体薄膜的平均偶极矩的变化。 类似于以前在溶液化学中确定的类似效应,这种现象可称为“固态溶剂化作用”。 在使用单掺杂器件的实验中,将不同浓度的称为DCM2的极性激光染料掺杂在非极性三芳基胺导电性主体膜中。 在这些实验中,DCM2具有作为发光中心和作为增加的空间平均偶极矩的源的双重作用。 在使用双掺杂器件的第二组实验中,DCM2仅用作非极性主体中的发光中心,而第二极性掺杂剂三(8-羟基喹啉)铝(Alq 3)被引入以产生局部 偶极矩 通过改变Alq3的浓度,同时保持DCM2浓度的固定,OLED发射可以调整在30nm的范围内。 对于单掺杂器件,由于聚集诱发的淬火,外部发光量子效率eta随着掺杂剂浓度而降低。 然而,对于双掺杂器件,eta随着红移变化的增加而增加。