摘要:
The present invention provides a manufacturing method of a liquid crystal display device capable of achieving uniform alignment of monostable ferroelectric liquid crystal having spontaneous polarization, and provides the liquid crystal display device. The liquid crystal (monostable ferroelectric liquid crystal having spontaneous polarization) showing a phase sequence, either isotropic liquid phase-cholesteric phase-chiral smectic C phase, isotropic liquid phase-chiral nematic phase-chiral smectic C phase, or isotropic liquid phase-cholesteric phase-smectic A phase-chiral smectic C phase, from a high temperature side to a low temperature side, is sandwiched between two glass substrates having transparent electrodes and alignment films whose pretilt angle is not more than 2° and rubbing directions are parallel. In an alignment treatment which is performed to obtain a monostable state after heating the liquid crystal, an electric field with electric field strength of not less than 2 V/μm is applied in the vicinity of the transition temperature from a higher temperature phase than chiral smectic C phase to the chiral smectic C phase.
摘要:
In a liquid crystal display device, one or a plurality of partition walls adhering to the two substrates are provided in a region between the adhesive member for sealing the peripheral portions of the two substrates and a display region located inside the adhesive member so as to reduce stress applied to the liquid crystal substance. Even when stress is applied to the liquid crystal substance in the peripheral portion of the substrate, the stress is reduced by the partition wall and is not transmitted to the display region on the opposite side of the partition wall. Therefore, even when a crack occurs in the peripheral portion of the substrate due to the stress, the propagation of the crack is stopped by the partition wall, and the crack does not enter the display region.
摘要:
A coating die is disclosed, in which a slit-like spacing 29 is formed between a pair of die elements 25, 27 arranged in opposed relation to each other. A band-shaped electrode sheet 23 is movable along the length of the spacing 29. The sides of the slit-like spacing along the width of the electrode sheet 23 are enclosed. An electrode piling agent is supplied from an external source into the die element pair 25, 27 through supply flow paths 47, 49. Discharge ports 47a, 49a of the supply flow paths 47, 49 are open to the slit-like spacing 29. The portion of the spacing 29 downstream of the discharge ports 47a, 49a in the direction of movement of the electrode sheet 23 has a thickness equivalent to the thickness of the electrode sheet 23 plus the thickness of the electrode piling agent coated on the two sides of the electrode sheet 23. The portion of the spacing 29 upstream of the discharge ports 47a, 49a has a thickness substantially equal to the thickness of the electrode sheet 23. The job of coating the electrode piling agent on the two sides of the electrode sheet can thus be performed with high accuracy.
摘要:
Air-blowing nozzles 21 for blowing a hot air are provided in both sides of an electrode sheet 33 for a battery both surfaces of which an electrode compounding agent has been applied to. In each of the air-blowing nozzles 21, a pair of slit-shaped blowholes 65 being extended in the width direction of the electrode sheet 33 are provided on both of the upper and lower sides of the end face part 63. The hot air blown off from a pair of the upper and lower blowholes 65 dries the electrode compounding agent as well as pressurizes a space between the electrode sheet 33 and the end face part 63 to form a pressure room P, and the left and right pressure rooms P hold the electrode sheet 33 to suppress its sway.
摘要:
This invention provides an electrolyte injection apparatus capable of injecting an electrolyte accurately into a battery which does not contain an electrolyte yet and in which an electrode group consisting of a laminated structure formed by interposing a separator between positive and negative electrodes is accommodated in a case such that a lamination plane of the electrode group is parallel to the direction of depth of the case. The electrolyte injection apparatus of this invention includes a rotary table, an electrolyte injection member supported by the rotary table so as to be tilted by a centrifugal force upon rotation of the rotary table, and the injection member further having an internal hole whose bottom section is tapered, and a small-diameter exit hole formed in a lower end thereof and communicating with the internal hole, a holding mechanism for holding the battery containing no electrolyte below the injection member such that the exit hole of the injection member is inserted into an opening portion of the case with a desired distance held between a lower opening portion of the exit hole and an upper end of the electrode group, and an electrolyte supply mechanism for supplying an electrolyte to the injection member.
摘要:
Although portions of electrodes in proximity to a driver IC are covered with an insulating film, part of the electrodes is not covered with the insulating film. Thus, this insulating film absent region functions as an external voltage supply region that receives, from the outside, application of a voltage which is different from an output voltage from a driving unit. When the alignment of the initial state is disarranged, an alignment process is performed by short-circuiting all electrodes of the driving unit and applying a voltage from the outside, through the external voltage supply region, whereby the alignment is restored to the initial state with the driving unit being mounted on a liquid crystal panel.
摘要:
A voltage corresponding to desired image data is applied to a ferroelectric liquid crystal having a spontaneous polarization at a predetermined cycle to rewrite the displayed image (period A), and then, all voltages applied to the ferroelectric liquid crystal are removed (timing C) to retain the displayed image before the removal (period B). A gate selection period (voltage application period to the ferroelectric liquid crystal) t2 before stopping the voltage application is set longer than a gate selection period (voltage application period to the ferroelectric liquid crystal) t1 in the normal display. Increasing the voltage application period to the ferroelectric liquid crystal provides a sufficient response of the liquid crystal during the gate selection period, thereby realizing high memory ability.
摘要:
The present invention provides a method of manufacturing a plasma display panel that includes forming an electrode on a substrate, forming a dielectric layer which covers the electrode on the substrate, and forming a protective layer which covers the dielectric layer, wherein the protective layer is in contact with a discharge space of the plasma display panel, and wherein the protective layer includes MgO and at least one compound selected from the group consisting of an Al compound, a Y compound, a Ti compound, a Zn compound, a Zr compound, a Ta compound and SiC having an ultraviolet shielding function.
摘要:
The present invention provides that a gas discharge panel substrate assembly comprising: electrodes formed on a substrate, a dielectric layer covering the electrodes, and a protective layer covering the dielectric layer and in contact with a discharge space, wherein the protective layer includes MgO and at least one compound selected from the group consisting of an Al compound, a Ti compound, a Y compound, a Zn compound, a Zr compound, a Ta compound and SiC.
摘要:
A plasma display panel has a matrix of plural first straight electrodes and plural straight second electrodes, respectively crossing each other, and a unit color element located at a crossing point of the first and second electrodes. A plurality of separator walls are spaced apart from each other and extend along the second electrodes, dividing a discharge space into a plurality of channels extending along respective, second electrodes. The separator walls undulate with a fixed periodicity so as to define alternating wide and narrow portions aligned along each channel and the respective first electrode. A fluorescent material is coated in each channel, the colors emitted from the fluorescent material being identical in each channel. A gas discharge takes place selectively at the wide portions in cooperation with the respective first and second electrodes. Optionally, connecting walls connect respective narrow portions of the adjacent separator walls, a height of the connecting wall being substantially lower than the height of the separator walls so as to allow the wide and narrow portions of each channel to be spatially continuous throughout a length of the channel.