Abstract:
An embodiment of a method for accessing a storage unit of a flash memory, performed by an arbiter, includes at least the following steps. After transmitting data to first storage units each connected to one of storage-unit access interfaces in a first batch, the arbiter issues a data write command to each first storage unit, thereby enabling each first storage unit to start a physical data programming. During the physical data programming of each first storage unit, data is transmitted to second storage units each connected to one of the storage-unit access interfaces in a second batch.
Abstract:
A flash memory controller for controlling a flash memory module includes a communication interface for receiving a first data and a second data; and a processing circuit for dynamically controlling a data writing mode of the flash memory module according to an amount of stored data in the flash memory module. If the amount of stored data in the flash memory module is less than a first threshold when the communication interface receives the first data, the processing circuit controls the flash memory module so that the first data is written into the first data block under an one-bit-per-cell mode. If the amount of stored data in the flash memory module is greater than the first threshold when the communication interface receives the second data, the processing circuit controls the flash memory module so that the second data is written into the second data block under a two-bit-per-cell mode.
Abstract:
High performance data storage device is disclosed, which has a memory controller dynamically updating mapping information on the temporary storage to manage physical space information mapped to a logical address recognized by a host. The memory controller uses a first bit to an Nth bit of the physical space information to indicate a physical space of the non-volatile memory or a cache address of the data cache space, without using additional bits to map the physical space information to the non-volatile memory or the data cache space, where N is a number greater than one. Among numbers formed by the first to the Nth bit, the memory controller uses numbers corresponding to non-existent physical space of the non-volatile memory to map the physical space information to the non-volatile memory or the data cache space.
Abstract:
A write control method, an associated data storage device and the controller thereof are provided. The write control method includes: receiving one or more commands from a host device and executing the one or more commands, and performing determining operations to generate determining results; in response to the determining results, starting performing write collection; collecting and handling one or more write commands to buffer data of the one or more write commands through a buffer memory, and performing other determining operations to generate other determining results; in response to the other determining results, according to a quantity of one or more collected and handled write commands, determining whether data thereof has filled up a write buffer region of the buffer memory; and in response to the data having filled up the write buffer region, flushing the write buffer region to write the data therein into a non-volatile memory.
Abstract:
A method for scheduling read commands, performed by a processing unit, includes at least the following steps: receiving a logical read command and a logical address; obtaining a high-level mapping table; obtaining a mapping table block according to the logical address and the high-level mapping table; obtaining a first physical address according to the logical address and the mapping table block; outputting an actual read command and the first physical address to a storage unit to obtain a data; and outputting the data which is responsive to the logical read command. The high-level mapping table includes a plurality of records, and one of the records is utilized to illustrate a second physical address of the mapping table block.
Abstract:
A flash memory controller for controlling a flash memory module includes a communication interface for receiving a first data and a second data; and a processing circuit for dynamically controlling a data writing mode of the flash memory module according to an amount of stored data in the flash memory module. If the amount of stored data in the flash memory module is less than a first threshold when the communication interface receives the first data, the processing circuit controls the flash memory module so that the first data is written into the first data block under an one-bit-per-cell mode.
Abstract:
A method for scheduling read commands, performed by a processing unit, includes at least the following steps: receiving a logical read command and a logical address; obtaining a high-level mapping table; obtaining a mapping table block according to the logical address and the high-level mapping table; obtaining a first physical address according to the logical address and the mapping table block; outputting an actual read command and the first physical address to a storage unit to obtain a data; and outputting the data which is responsive to the logical read command. The high-level mapping table includes a plurality of records, and one of the records is utilized to illustrate a second physical address of the mapping table block.
Abstract:
A data storage device with a non-volatile memory on which a garbage collection operation is segmented to be accomplished at separate time intervals. Host commands are inserted to be executed between the separate time intervals. A data swap stage or/and an F2H table update stage or/and an H2F table update stage for a garbage collection operation may be segmented to be performed at separate time intervals.
Abstract:
A flash memory controller for controlling a flash memory module includes a communication interface for receiving a first data and a second data; and a processing circuit for dynamically controlling a data writing mode of the flash memory module according to an amount of stored data in the flash memory module. If the amount of stored data in the flash memory module is less than a first threshold when the communication interface receives the first data, the processing circuit controls the flash memory module so that the first data is written into the first data block under an one-bit-per-cell mode. If the amount of stored data in the flash memory module is greater than the first threshold when the communication interface receives the second data, the processing circuit controls the flash memory module so that the second data is written into the second data block under a two-bit-per-cell mode.
Abstract:
A method for reading data from a storage unit of a flash memory, performed by a processing unit, including at least the following steps: A first read command is received from a master device via a first access interface. It is determined whether data requested by the first read command has been cached in a first buffer, which caches continuous data obtained from a storage unit. A second access interface is directed to read the data requested by the first read command from the storage unit and store the read data in a second buffer and the first access interface is directed to read the data requested by the first read command from the second buffer and clock the read data out to the master device when data requested by the first read command has not been cached in the first buffer.