Abstract:
This disclosure provides techniques for the creation of maps of indoor spaces. In these techniques, an individual or a team with no mapping or cartography expertise can contribute to the creation of maps of buildings, campuses or cities. An indoor location system can track the location of contributors in the building. As they walk through indoor spaces, an application may automatically create a map based on data from motion sensors by both tracking the location of the contributors and also inferring building features such as hallways, stairways, and elevators based on the tracked contributors' motions as they move through a structure. With these techniques, the process of mapping buildings can be crowd sourced to a large number of contributors, making the indoor mapping process efficient and easy to scale up.
Abstract:
This disclosure provides techniques for the creation of maps of indoor spaces. In these techniques, an individual or a team with no mapping or cartography expertise can contribute to the creation of maps of buildings, campuses or cities. An indoor location system can track the location of contributors in the building. As they walk through indoor spaces, an application may automatically create a map based on data from motion sensors by both tracking the location of the contributors and also inferring building features such as hallways, stairways, and elevators based on the tracked contributors' motions as they move through a structure. With these techniques, the process of mapping buildings can be crowd sourced to a large number of contributors, making the indoor mapping process efficient and easy to scale up.
Abstract:
A method for computing a correction to a compass heading for a portable device worn or carried by a user is described. The method involves determining a heading for the device based on a compass reading, collecting data from one or more sensors, determining if the device is indoors or outdoors based on the collected data, and correcting the heading based on the determination of whether the device is indoors or outdoors.
Abstract:
This disclosure provides techniques for the creation of maps of indoor spaces. In these techniques, an individual or a team with no mapping or cartography expertise can contribute to the creation of maps of buildings, campuses or cities. An indoor location system can track the location of contributors in the building. As they walk through indoor spaces, an application may automatically create a map based on data from motion sensors by both tracking the location of the contributors and also inferring building features such as hallways, stairways, and elevators based on the tracked contributors' motions as they move through a structure. With these techniques, the process of mapping buildings can be crowd sourced to a large number of contributors, making the indoor mapping process efficient and easy to scale up.
Abstract:
Disclosed herein are methods and systems for mapping irregular features. In an embodiment, a computer-implemented method may include obtaining tracking data that has dead reckoning tracking data for a tracked subject along a path and performing shape correction on the tracking data to provide a first estimate of the path.
Abstract:
Methods and systems are described for determining the elevation of tracked personnel or assets (trackees) that can take input from mounted sensors on each trackee (including barometric, inertial, magnetometer, radio frequency ranging and signal strength, light and GPS sensors), external constraints (including ranging constraints, feature constraints, and user corrections), and terrain elevation data. An example implementation of this method for determining elevation of persons on foot is described. But this method is not limited to computing elevation of personnel or to on foot movements.
Abstract:
Methods for calibrating a body-worn magnetic sensor by spinning the magnetic sensor 360 degrees to capture magnetic data; if the spin failed to produce a circle contained in an x-y plane fit a sphere to the captured data; determining offsets based on the center of the sphere; and removing the offsets that are in the z-direction. Computing a magnetic heading reliability of a magnetic sensor by determining an orientation of the sensor at one location; transforming the orientation between two reference frames; measuring a first vector associated with the magnetic field of Earth at the location; processing the first vector to generate a virtual vector when a second location is detected; measuring a second vector associated with the magnetic field of Earth at the second location; and calculating the magnetic heading reliability at the second location based on a comparison of the virtual vector and the second vector.
Abstract:
A system and method for recognizing features for location correction in Simultaneous Localization And Mapping operations, thus facilitating longer duration navigation, is provided. The system may detect features from magnetic, inertial, GPS, light sensors, and/or other sensors that can be associated with a location and recognized when revisited. Feature detection may be implemented on a generally portable tracking system, which may facilitate the use of higher sample rate data for more precise localization of features, improved tracking when network communications are unavailable, and improved ability of the tracking system to act as a smart standalone positioning system to provide rich input to higher level navigation algorithms/systems. The system may detect a transition from structured (such as indoors, in caves, etc.) to unstructured (such as outdoor) environments and from pedestrian motion to travel in a vehicle. The system may include an integrated self-tracking unit that can localize and self-correct such localizations.
Abstract:
A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
Abstract:
A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.