摘要:
A powder feeding apparatus and a method of manufacturing a heat pipe are disclosed. The method includes: a) proving the powder feeding apparatus including a vibrating tray and a pump (800); b) positioning a tube in the vibrating tray; c) inserting a mandrel (400) into the tube from a first open end of the tube, wherein at least one groove (410) is defined in an end of the mandrel corresponding to a second open end of the tube; d) positioning a feeder (300) on the first end of the tube; e) driving the vibrating tray to vibrate and feeding powder into the tube from the feeder whilst the pump is operating to generate a forced airflow flowing from the first to the second open end of the tube. By using this method, bridging of the powder is prevented.
摘要:
A method (100) and an apparatus for manufacturing a heat-dissipation device (10) with a vacuum chamber and a working fluid therein are disclosed. The method includes the following steps: vacuuming a hollow metal casing (12) through a first open end (121) thereof until an interior of the casing reaches a predetermined vacuum degree; sealing the first open end; filling a predetermined quantity of working fluid into the casing through a second open end (123) thereof; and sealing the second open end. The apparatus includes a vacuum pump, a liquid-storage tank and a set of processing device, as used respectively for the above vacuuming, liquid-filling and sealing steps. By this apparatus, the heat-dissipation device can be manufactured at a same place without the requirement to shift the casing from one place to another place during the manufacture of the heat-dissipation device.
摘要:
A method (100) and an apparatus for manufacturing a heat-dissipation device (10) with a vacuum chamber and a working fluid therein are disclosed. The method includes the following steps: vacuuming a hollow metal casing (12) through a first open end (121) thereof until an interior of the casing reaches a predetermined vacuum degree; sealing the first open end; filling a predetermined quantity of working fluid into the casing through a second open end (123) thereof; and sealing the second open end. The apparatus includes a vacuum pump, a liquid-storage tank and a set of processing device, as used respectively for the above vacuuming, liquid-filling and sealing steps. By this apparatus, the heat-dissipation device can be manufactured at a same place without the requirement to shift the casing from one place to another place during the manufacture of the heat-dissipation device.
摘要:
A heat pipe includes a body with working fluid contained therein and a sealing structure forming on an end of the body. The sealing structure includes a single layer sealing portion formed at a distal end thereof. The sealing structure further comprises a two layer sealing portion connecting the single layer sealing portion to the body. The single layer and two layer sealing portions and the body are made of the same metallic material. A method for sealing the heat pipe, includes the steps of: (1) providing a metallic pipe with an end sealed and an opposite open portion; (2) pressing the open portion of the pipe to form a two layer sealing portion; (3) melting at least one part of the two layer sealing portion to form a single layer sealing portion.
摘要:
A powder feeding apparatus of manufacturing a heat pipe includes a vibration tray having a supporting board and a plurality of pipes positioned in the supporting board of the tray. A mandrel is coaxially inserted in each of the pipes. A feeder is located corresponding to an end of each pipe for feeding powder into the pipe. A vibration source is located under the tray to drive the tray to vibrate with substantially a same amplitude in a vibration direction when feeding the powder into the pipes from the feeder.
摘要:
A heat pipe includes a shell containing a working fluid therein, a capillary wick arranged within the shell and a vapor channel. The shell includes an evaporating section, a condensing section and an adiabatic section located between the evaporating section and the condensing section. The capillary wick includes a first segment occupying the whole of the evaporating section, a second segment and a third segment received in the condensing section and connected to the first segment by the second segment. The vapor channel is defined between the second segment of the capillary wick and the shell.
摘要:
A loop-type heat exchange device (10) is disclosed, which includes an evaporator (20), a condenser (40), a vapor conduit (30) and a liquid conduit (50). The evaporator contains therein a working fluid. The working fluid in the evaporator evaporates into vapor after absorbing heat, and the generated vapor flows, via the vapor conduit, to the condenser where the vapor releases its latent heat of evaporation and is condensed into condensate. The condensate then returns back, via the liquid conduit, to the evaporator to thereby form a heat transfer loop. The condenser defines therein a chamber, and a plurality of heat-exchange pins is provided inside the chamber for effectively exchanging heat with the vapor entering into the condenser.
摘要:
A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating a heat pipe requiring test. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. At least one temperature sensor is telescopically mounted in at least one of the immovable portion and the movable portion. The least one temperature sensor has a detecting section exposed in the receiving structure for thermally contacting the heat pipe in the receiving structure to detect a temperature of the heat pipe.
摘要:
A heat pipe (50) and a method (100) of producing the heat pipe are disclosed. The method includes the following steps: (1) inserting a mandrel (10) into a hollow metal casing (20) with a porous structure (30) combined to an outer surface of the mandrel; (2) filling powders (40) into a space formed between the hollow metal casing and the porous structure; (3) sintering the filled powders; (4) drawing the mandrel out of the hollow metal casing; and (5) sealing the hollow metal casing with a working fluid filled therein. The heat pipe produced by this method includes a composite wick structure (60) arranged in the hollow metal casing. By using this method, the mandrel can be easily drawn out of the hollow metal casing after the filled powders are sintered.
摘要:
An integrated liquid cooling system for removing heat from a heat-generating component includes a base (10), a pump (20) mounted in the base and a heat-dissipating member (30) communicating with the pump and coupling with the base. The pump includes a casing (21) having a chamber (212). A rotor (22), a partition seat (23) and a stator (24) are in turn received in the chamber. A top cover (25) is attached on the casing. The casing includes a bottom plate (214) having a bottom surface. The bottom surface of the bottom plate contacts the heat-generating electronic component for absorbing heat generated by the electronic component.