摘要:
An exemplary electronic device includes a base, a cover, side plates, a heat conduct plate, a wick structure, a working medium and at least one electronic element. The cover and the base cooperatively define a cavity. The at least one side plate extends from the cover and receives in the cavity. The heat conduct plate and the at least side plate and the cover cooperatively defines a sealed chamber. The wick structure is attached to an inner surface of the sealed chamber. The working medium is received in the wick structure. The at least one electronic element is received in the cavity and thermally connected to the heat conduct plate.
摘要:
A method for manufacturing a plate-type heat pipe includes providing a mold including a first cavity and a plurality of second cavities and depositing cores into the mold. Each core has a first portion in the first cavity and a second portion in a corresponding second cavity. First and second metal powder are filled into the mold. The cores are then removed from the mold to form a green piece by the first and second metal powder, which has first and second chambers therein. The green piece is sintered, whereby the first metal powder forms an outer wall of the heat pipe and the second metal powder forms a wick structure. The heat pipe has a heat absorbing portion having the first chambers and fins having the second chambers communicating with the first chambers.
摘要:
A method for manufacturing a hydrodynamic bearing (30) comprises steps of: step (201): providing a substrate (10) with a plurality of protrusions (14) formed on a periphery thereof; step (202): placing the substrate in a middle of a hollow mold, then injecting a feedstock of powder and molten binder into the mold to surround the substrate under pressure, thus forming a desired bearing preform (20); step (203): separating the substrate from the bearing preform by means of catalytic debinding; step (204): separating the binder from the bearing preform; step (205): sintering the bearing preform; step (206): precision machining the bearing preform to form the desired hydrodynamic bearing.
摘要:
A method for manufacturing a hydrodynamic bearing with hydrodynamic pressure generating grooves comprises steps of: step 201: providing a substrate with a first annular protrusion and a plurality of projections formed on a periphery thereof, the projections being in a side of the first annular protrusion; step 202: placing the substrate in a middle of a hollow mold, then injecting a feedstock of powder and molten binder under pressure into the mold to surround the substrate, thus forming a desired bearing preform; step 203: separating the substrate from the bearing preform by means of catalytic debinding; step 204: separating the molten binder from the bearing preform; step 205: sintering the bearing preform to thereby form the hydrodynamic bearing.
摘要:
A heat pipe includes a hollow metal casing (100) and a honeycombed wick structure (200) arranged at an inner surface of the hollow metal casing. The wick structure includes a plurality of slices (210, 220) stacked together. Each of the slices has a plurality of pores therein and a plurality of protrusions (222) formed thereon along a longitudinal direction of the heat pipe to form a plurality of liquid channels (230) in the wick structure along the longitudinal direction of the heat pipe. Each liquid channel has alternate large and small sections (232, 231) along a length thereof.
摘要:
A method for manufacturing a plate-type heat pipe includes providing an elongated engaging plate and a base plate. A plurality of supporting members is secured on a top surface of the base plate. A second and third metal powders are filled onto the base plate, surrounding lower ends of the supporting members. The second and third metal powders are heated to obtain a first wick structure and a second wick structure. The first wick structure adheres to the top surface of the base plate and the second wick structure adheres to the top surface of the first wick structure. The base plate and the supporting members are secured to a bottom surface of the engaging plate to obtain a workpiece. A working fluid is injected into the workpiece and the workpiece is vacuumed to obtain the plate-type heat pipe.
摘要:
A performance testing apparatus for a heat pipe includes an immovable portion having a first heating member located therein for heating an evaporating section of a heat pipe requiring testing. A movable portion is capable of moving relative to the immovable portion and has a second heating member located therein for heating the evaporating section of the heat pipe. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portion therein and has sidewalls thereof slidably contacting at least one of the immovable portion and the movable portion.
摘要:
A powder feeding apparatus and a method of manufacturing a heat pipe are disclosed. The method includes: a) proving the powder feeding apparatus including a vibrating tray and a pump (800); b) positioning a tube in the vibrating tray; c) inserting a mandrel (400) into the tube from a first open end of the tube, wherein at least one groove (410) is defined in an end of the mandrel corresponding to a second open end of the tube; d) positioning a feeder (300) on the first end of the tube; e) driving the vibrating tray to vibrate and feeding powder into the tube from the feeder whilst the pump is operating to generate a forced airflow flowing from the first to the second open end of the tube. By using this method, bridging of the powder is prevented.
摘要:
A performance testing apparatus for a heat pipe includes an immovable portion having a heating member located therein for heating an evaporating section of the heat pipe, and a movable portion capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A positioning structure extends from the immovable portion and slideably receives the movable portion therein for avoiding the movable portion from deviating from the immovable portion during movement of the movable portion relative the immovable portion. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein, and defines a space therein for movement the movable portion relative to the immovable portion.
摘要:
A performance testing apparatus for a heat pipe includes an immovable portion having a cooling structure defined therein for cooling the heat pipe. A movable portion is capable of moving relative to the immovable portion. A receiving structure is defined between the immovable portion and the movable portion for receiving the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion for ensuring the receiving structure being capable of precisely receiving the heat pipe. Temperature sensors are attached to the immovable portion and the movable portion to detect a temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein to provide a thermally stable environment for the heat pipe during test.