摘要:
What is disclosed is a method for digital watermarking in a calibrated printing path and comprises: first receiving a pixel possessing color values from an input image; receiving a plurality of information bits to be encoded at a corresponding pixel in an output image. Then, one of at least two different GCR functions are selected where the selection is based on the state of the received information bits. The number of GCR functions to be selected from is dependent on the number of possible states of the information bits intended to be encoded at each image pixel and preferably equals the number of states of the information bits intended to be encoded at each image pixel such that the GCR spatially varies across the output image. Further, at least two GCR functions are optimized to carry information and information bits intended to be encoded within the output image are represented with a tag. CMYK values are then generated using the selected GCR function and the color values. These CMYK values are assigned to a corresponding pixel in the output image. The information bits to be encoded at a given pixel indicate the type of object to which that pixel belongs, such as: graphics, picture, text, line art, etc. The output image, when printed, exhibits the property that substantially similar colors occurring at different spatial locations in the input image are produced with substantially different CMYK combinations in the print. Preferably, a parameterized function is used for the GCR function and the encoded state sets the parameter of the function. Information bits should be redundantly encoded throughout the output image. Regions that cannot be encoded by GCR information have to be compensated for. A reference mark is applied on the output image to indicate the starting point and order of the information sequence.
摘要:
A method detects if an image is compressed. The method determines a block grid within the image and establishes blocks from the determined grid. The method then computes differences between samples inside the established blocks and differences between samples across the established blocks. The method determines that the image is compressed based on characteristics derived from statistics of the computed differences.
摘要:
The present invention is a method and apparatus for automatically detecting the characteristics of a document object placed on the platen of a digital copier or similar scanning system. The invention accomplishes the detection by processing a digitized image in a highly efficient manner using binary moments, and using the moments characterizes the shape of a boundary about the object. Once determined, the shape of the object may be employed to further process the image to automatically crop, derotate, and register the image at a predefined location in an output image suitable for rendering on a document substrate.
摘要:
The present invention is a method and apparatus for the processing of images that have been compressed using a discrete cosine transform operation, and particularly JPEG compressed images. In a preferred embodiment, the rotation of image blocks is accomplished by sign inversion and transposition operations to accomplish intrablock operations. Subsequently, one of a number of alternative methods is employed to accomplish the same image processing on an interblock level, thereby enabling the rotation or mirroring of compressed images. The two stage process allows the use of either a standardized JPEG system with enhancements or a hybrid processing method, thereby accomplishing the image processing in conjunction with compression or decompression operations and minimizing the need for large memory buffers to accomplish the image processing. Accordingly, the technique has application to any number of systems, including digital printers and copiers where there may be a necessity to orthogonally rotate or mirror the digital image.
摘要:
An enhancement to the standard JPEG image data compression technique includes a step of recording the length of each string of bits corresponding to each block of pixels in the original image at the time of compression. The list of lengths of each string of bits in the compressed image data is retained as an "encoding cost map" or ECM. The ECM, which is considerably smaller than the compressed image data, can be transmitted or retained in memory separate from the compressed image data along with some other accompanying information and is used as a "key" for editing or segmentation of the compressed image data.
摘要:
A system and method for authentication of JPEG image data enables the recipient to ascertain whether the received image file originated from a known identified source or whether the contents of the file have been altered in some fashion prior to receipt. A unique hashing function is derived from a first section of image data contained in the JPEG compressed image in such a way that any changes subsequently made to the first section of image data is reflected in a different hashing function being derived from a signature string is ten embedded into a next section of the image data. Since the embedding of a previous section's integrity checking number is done without modifying the JPEG bit stream, any JPEG decoder can thereafter properly decode the image.
摘要:
A method is disclosed for converting color images to textured monochrome images such that image regions with similar luminance but different chrominance look different when converted to black-and-white to preserve color information therein. This texture-encoded color information can be extracted at a later time to reconstitute the original color image. The present method involves first converting the color image to a luminance-chrominance colorspace. The chrominance data is decomposed into 4 channels of chrominance. A wavelet transformation of the luminance channel is preformed. Scaled chrominance channels are then mapped to a number of wavelet sub-bands. Once mapped, the wavelet transform is inverted to generate textures proportional to the original colors of the color image having an amplitude proportional to the chroma of the original color. The black-and-white image is embedded with this texture information into the image's grayscale component. In order to retrieve the color image from the textured grayscale image, a wavelet transform regenerates the scaled chrominance channels mapped therein. Those wavelet sub-bands comprising embedded chroma are extracted and scaled to the size of the original image. The remaining sub-bands are inverted to produce the Y-image thereof. Separate images now exist in Y, Cr, and Cb. The recombination of the YCbCr images produce the colored image that was previously embedded into the grayscale components of the textured black-and-white image.
摘要:
This invention is a method and apparatus for processing decompressed images. More particularly, this invention relates to methods and apparatus which process images without requiring information on whether the image was previously compressed or how the image was compressed. Quantization values of each image block of a decompressed image are determined a compression method used to compress a decompressed image to be processed is identified. The method and apparatus of this invention is particularly useful to determine if a decompressed image was previously compressed using a JPEG compression technique by retrieving DCT coefficients and determining quantization values to determine original DCT coefficients of a compressed and decompressed image.
摘要:
A method for decompressing digital image data to improve the speed of decompression is disclosed. More specifically, the present invention improves image decompression time by operating upon a subset of the original data and by performing a modified discrete cosine transform on a subset of the originally provided data. The subset is determined by examining the compressed data and looking for a particular pattern of zero values and/or and “end of block” statement.
摘要:
A method and apparatus for compressing digital image data to improve the efficiency of serial data transmission is disclosed. More specifically, the present invention accomplishes image transmission by providing multiple image processing modules, and then selecting the module that will process the entire in the most efficient manner, based upon the content of the data contained in the image. Image content is analyzed using hierarchical vector quantization.