Abstract:
A plasma processing apparatus includes a high frequency antenna having first and second antenna elements. One end of the first antenna element is grounded and the other end thereof is connected to a high frequency power supply. One end of the second antenna element is an open end and the other end thereof is connected to either one of the one end and the other end of the first antenna element, a line length of the second antenna element having a value obtained by multiplying ((λ/4)+nλ/2) by a fractional shortening (λ is a wavelength of high frequency in vacuum and n is a natural number). A circuit viewed from the high frequency power supply toward the high frequency antenna is configured to generate, when a frequency of a high frequency power is changed, two resonant frequencies by an adjustment of the impedance adjustment unit.
Abstract:
A temperature measuring method of a component of a substrate processing chamber including a surface being worn or being deposited with a foreign material by using. The method includes: providing data representing a relationship between a temperature of the component and an optical path length of a predetermined path within the component; measuring an optical path length of the predetermined path within the component by using optical interference of reflection lights of a low-coherence light from the component when the low-coherence light is irradiated onto the component to travel through the predetermined path; and obtaining a temperature of the component by comparing the measured optical path length with the data.
Abstract:
There is provided a plasma processing apparatus, including: a chamber main body; a plasma trap installed inside a chamber provided by the chamber main body, and configured to divide the chamber into a first space and a second space; a mounting table installed in the second space; a plasma source configured to excite gases supplied to the first space; and a potential adjustment part including an electrode to be capacitively coupled to a plasma generated in the first space, and configured to adjust a potential of the plasma.
Abstract:
A plasma processing apparatus includes a high frequency antenna having first and second antenna elements. One end of the first antenna element is grounded and the other end thereof is connected to a high frequency power supply. One end of the second antenna element is an open end and the other end thereof is connected to either one of the one end and the other end of the first antenna element, a line length of the second antenna element having a value obtained by multiplying ((λ/4)+nλ/2) by a fractional shortening (λ is a wavelength of high frequency in vacuum and n is a natural number). A circuit viewed from the high frequency power supply toward the high frequency antenna is configured to generate, when a frequency of a high frequency power is changed, two resonant frequencies by an adjustment of the impedance adjustment unit.
Abstract:
An apparatus for measuring a thickness or wear amount and a temperature of the ceramic member by using a terahertz wave includes a terahertz wave generating unit configured to output a terahertz wave, a terahertz wave analysis unit configured to analyze a terahertz wave and an optical system configured to guide the terahertz wave output from the terahertz wave generating unit to the ceramic member and guide reflected waves of the terahertz wave reflected from the ceramic member to the terahertz wave analysis unit. The terahertz wave analysis unit obtains an optical path difference between a first reflection wave reflected from a front surface of the ceramic member and a second reflection wave reflected from a rear surface of the ceramic member and measures a thickness of the ceramic member based on the optical path difference.
Abstract:
A temperature measuring method of a component of a substrate processing chamber including a surface being worn or being deposited with a foreign material by using. The method includes: providing data representing a relationship between a temperature of the component and an optical path length of a predetermined path within the component; measuring an optical path length of the predetermined path within the component by using optical interference of reflection lights of a low-coherence light from the component when the low-coherence light is irradiated onto the component to travel through the predetermined path; and obtaining a temperature of the component by comparing the measured optical path length with the data.
Abstract:
A temperature measuring apparatus includes a light source, a first splitter, a second splitter, a reference beam reflector, an optical path length adjuster, a reference beam transmitting member, a first to an nth measuring beam transmitting member and a photodetector. The temperature measuring apparatus further includes an attenuator that attenuates the reference beam reflected from the reference beam reflector to thereby make an intensity thereof closer to an intensity of the measurement beam reflected from the temperature measurement object.