Abstract:
A measuring tube, a measuring system and a method for determining and/or monitoring flow through a measuring tube, comprising a measuring tube, on which ultrasonic transducers are releasably placeable. The ultrasonic transducers transmit and/or receive ultrasonic signals, which pass through the measuring tube approximately coaxially to the measuring tube axis.
Abstract:
A measuring tube, a measuring system and a method for determining and/or monitoring flow through a measuring tube, comprising a measuring tube, on which ultrasonic transducers are releasably placeable. The ultrasonic transducers transmit and/or receive ultrasonic signals, which pass through the measuring tube approximately coaxially to the measuring tube axis.
Abstract:
Thermal, flow measuring device and method for operating a thermal, flow measuring device, wherein the thermal, flow measuring device has a first sensor with a first heatable resistance thermometer and at least an additional, second sensor with a second heatable resistance thermometer. A decision coefficient is calculated according to the formula DC=(PC1−PC2)/PC1, with PC1(t=t1)=P1,1(t1)/(T1,heated;actual(t=t1)−Tmedium;actual(t=t1)) and PC2(t=t2)=P2,2(t2)/(T2,heated;actual(t=t2)−Tmedium;actual(t=t2)), with P being the heating powers consumed by the corresponding resistance thermometers at the points in time t, and T being the temperature values; wherein the value of the decision coefficient indicates the flow direction of a measured medium in the measuring tube.
Abstract:
Various embodiments are disclosed relating to the real-time monitoring and control for audio devices. An apparatus may include a peripheral audio device configured to operate in an operational mode or a debug mode, the peripheral audio device including an audio enhancement logic configured to include at least one tunable parameter. The apparatus may also include the peripheral audio device being further configured to transmit and receive data via a data channel to allow a debug or test to be performed on the peripheral audio device, while operating in the debug mode, and the at least one tunable parameter to be adjusted.
Abstract:
The measuring system has a measuring transducer which produces primary signals transmitter electronics for activating the measuring transducer and for evaluating primary signals. The measuring transducer includes at least one measuring tube; at least one electro-mechanical, oscillation exciter, a first oscillation sensor. The transmitter electronics, in turn, delivers at least one driver signal for the oscillation exciter for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal and by means of the second primary signal, as well as with application of a Reynolds number, measured value representing a Reynolds number, Re, for medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
Abstract:
A measuring system comprises: a measuring transducer of vibration type, through which fluid flows during operation, and which produces oscillation signals corresponding to parameters of the flowing fluid; as well as a transmitter electronics (TE), which is electrically coupled with the measuring transducer, and serves for activating the measuring transducer and for evaluating oscillation signals delivered by the measuring transducer. The measuring transducer (MT) includes: At least one measuring tube (10; 10′) for conveying flowing fluid; at least one electro-mechanical oscillation exciter (41) for actively exciting and/or maintaining bending oscillations of the at least one measuring tube in a wanted mode; and at least a first oscillation sensor (51) for registering vibrations of the at least one measuring tube, and for producing an oscillation signal (s1) of the measuring transducer, representing vibrations at least of the at least one measuring tube. The transmitter-electronics (TE), in turn, generates, by means of a signal component of the oscillation signal, which represents a bending oscillation mode, in which the at least one vibrating measuring tube executes bending oscillations with at least one oscillatory antinode more than in the case of the bending oscillations in the wanted mode, a cavitation report (XKV), which signals an occurrence of cavitation in the fluid.
Abstract:
A method for monitoring communication in a wind farm network. A server is attached to one or more network nodes in a wind farm network. The server determines whether it is capable of communicating with each of the network nodes and reports the results as a network state. A graphical representation of the network state may be displayed to a user.
Abstract:
The measuring system comprises: A measuring transducer of vibration-type, through which medium flows during operation and which produces primary signals corresponding to parameters of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating primary signals delivered by the measuring transducer. The measuring transducer includes: At least one measuring tube for conveying flowing medium; at least one electro-mechanical, oscillation exciter for exciting and/or maintaining vibrations of the at least one measuring tube; as well as at least a first oscillation sensor for registering vibrations at least of the at least one measuring tube and for producing a first primary signal of the measuring transducer representing vibrations at least of the at least one measuring tube. The transmitter electronics, in turn, delivers at least one driver signal for the exciter mechanism for effecting vibrations of the at least one measuring tube and generates, by means of the first primary signal, as well as with application of a damping, measured value, which represents an excitation power required for maintaining vibrations of the at least one measuring tube, and, respectively, a damping of vibrations of the at least one measuring tube as a result of inner friction in the medium flowing in the measuring transducer, a pressure difference, measured value, which represents a pressure difference occurring between two predetermined reference points in the flowing medium.
Abstract:
A measuring transducer comprises a measuring tube vibrating at least at times during operation, having a wall thickness (s) and at least one oscillation sensor, especially an electrodynamic oscillation sensor, for producing at least one primary signal of the measuring transducer representing vibrations of the measuring tube. In the measuring transducer at least one securement element, especially a metal securement element, fixedly encircling the measuring tube essentially along a circumferential line thereof and having a total width (B), for holding a component of the oscillation sensor, especially a magnet coil or a permanent magnet, on the measuring tube is provided. The securement element has an essentially rectangular outer perimeter with a projection protruding out therefrom by a height (h) and serving for holding the component of the oscillation sensor. The projection has a width (e), which is smaller than the total width (B) of the securement element.
Abstract:
A method for monitoring operation of a wind farm including a plurality of wind turbines is provided. The method includes monitoring a parameter indicative of an environmental condition at each wind turbine of the plurality of wind turbines, transmitting, to a monitoring component, a signal representative of the parameter from each wind turbine, determining whether the monitored parameter is one of above a first threshold level and below a second threshold level, and displaying on a display device a live plot representative of the monitored environmental condition corresponding to each wind turbine.