Abstract:
The present disclosure involves an LED lamp. The LED lamp includes a plurality of light-emitting diode (LED) light sources located on a substrate. At least a subset of the LED light sources is free of a phosphor coating. The LED lamp includes a multi-layered cap structure located over at least the subset of the LED light sources. The cap structure contains a phosphor material and a diffuser material. The cap structure is physically separated from the subset of the LED light sources by a gap. The LED lamp includes a cover structure positioned over and surrounding the LED light sources and the cap structure.
Abstract:
The present disclosure relates to methods for fabricating electrical connectors of a waterproof connector-heat sink assembly of a LED light bar module using injection molding. The methods include matching the coefficient of thermal expansion (CTE) of injection molding materials for the connectors and heat sinks. A heat sink and conductor pins are inserted into an injection mold and the injection molding materials are injected into the injection mold. An integrated connector-heat sink assembly is formed when the injection molding materials of the connectors form a waterproof seal with the heat sink when the injection molding materials solidify. Placement of the heat sink and conductor pins inside the injection mold is controlled to ensure that adhesive bonding between the injection molding materials and the heat sink is stronger than a maximum shear force.
Abstract:
A Light Emitting Diode (LED) module includes a circuit board having a front side and a back side, a heat sink coupled to the back side of the circuit board, a thermal pad disposed on a front side of the circuit board, an LED disposed on the front side of the circuit board. The LED is in thermal contact with the thermal pad. The module further includes a heat spreading device placed over the thermal pad and in thermal contact with the thermal pad.