Abstract:
A light emitting diode (LED) carrier assembly includes an LED die mounted on a silicon submount, a middle layer that is thermally conductive and electrically isolating disposed below the silicon submount, and a printed circuit board (PCB) disposed below the middle layer. The middle layer is bonded with the silicon submount and the PCB.
Abstract:
The embodiments of a light-emitting-diode-based (LED-based) light bulb and an LED assembly described provide mechanisms of reflecting generated by LED emitters toward the back of the LED-based light bulb. An upper substrate and a lower substrate are used to support upper and lower LED emitters. A slanted and reflective surface between the upper substrate and the lower substrate reflects light generated by the lower LED emitters toward the backside of the LED-based light bulb.
Abstract:
The present disclosure involves an LED lamp. The LED lamp includes a plurality of light-emitting diode (LED) light sources located on a substrate. At least a subset of the LED light sources is free of a phosphor coating. The LED lamp includes a multi-layered cap structure located over at least the subset of the LED light sources. The cap structure contains a phosphor material and a diffuser material. The cap structure is physically separated from the subset of the LED light sources by a gap. The LED lamp includes a cover structure positioned over and surrounding the LED light sources and the cap structure.
Abstract:
The present disclosure provides an illumination device. The illumination device includes a cap structure. The cap structure is partially coated with a reflective material operable to reflect light. The illumination device includes one or more lighting-emitting devices disposed within the cap structure. The light-emitting devices may be light-emitting diode (LED) chips. The illumination device also includes a thermal dissipation structure. The thermal dissipation structure is coupled to the cap structure in a first direction. The thermal dissipation structure and the cap structure have a coupling interface. The coupling interface extends in a second direction substantially perpendicular to the first direction. The thermal dissipation structure has a portion that intersects the coupling interface at an angle. The angle is in a range from about 60 degrees to about 90 degrees according to some embodiments.
Abstract:
The present disclosure provides an illumination device. The illumination device includes a light emitting device (LED) on a substrate. A heat sink is thermally connected to the LED device. A cap is secured over the substrate and covers the LED device. The cap includes a coating material that comprises both diffusion and reflection characteristics.
Abstract:
A lighting device includes a multi-faceted heat sink with facets in a center portion facing outward. The facets form a central enclosed portion, and the heat sink further has a plurality of fins, where each of the fins is placed between adjacent facets and protrudes outwardly from the heat sink. The lighting device also has a plurality of circuit boards with semiconductor emitters mounted thereon. Each of the circuit boards is mounted on a respective facet of the heat sink. The lighting device also has a light-diffusion housing covering the plurality of circuit boards, a power module in communication with the circuit boards and operable to convert power to be compatible with the semiconductor emitters, and a power connector assembly in electrical communication with the power module.
Abstract:
A light emitting diode (LED) carrier assembly includes an LED die mounted on a silicon submount, a middle layer that is thermally conductive and electrically isolating disposed below the silicon submount, and a printed circuit board (PCB) disposed below the middle layer. The middle layer is bonded with the silicon submount and the PCB.
Abstract:
The present disclosure provides an illumination device. The illumination device comprises a light-emitting diode (LED) device on a substrate, a heat sink and a cap. The heat sink is thermally connected to the LED device. The cap is secured over the substrate and covering the LED device. The cap includes a coating material having diffusion and reflection characteristics, and the coating material is free of being in direct contact with the LED device. The coating material is applied on a first portion of an inner surface of the cap, but not on a second portion of the inner surface of the cap.
Abstract:
A light-emitting diode (LED) lamp includes a number of different color LEDs that can be turned on and off in different combinations using an external switch operable by a user. A user or a controller can adjust the color temperature of light output by the lamp. The color temperature change may be a user preference and can compensate for decreased phosphor efficiency over time.
Abstract:
The present disclosure relates to methods for fabricating electrical connectors of a waterproof connector-heat sink assembly of a LED light bar module using injection molding. The methods include matching the coefficient of thermal expansion (CTE) of injection molding materials for the connectors and heat sinks. A heat sink and conductor pins are inserted into an injection mold and the injection molding materials are injected into the injection mold. An integrated connector-heat sink assembly is formed when the injection molding materials of the connectors form a waterproof seal with the heat sink when the injection molding materials solidify. Placement of the heat sink and conductor pins inside the injection mold is controlled to ensure that adhesive bonding between the injection molding materials and the heat sink is stronger than a maximum shear force.