Abstract:
A document presentation system routes a document having sensitive data to various users, wherein the various users have different levels of permission to access the sensitive data. When any user displays the document on a display of an electronic device, the display will show document so that sensitive data is replaced with an augmented reality (AR) marker. The AR marker may include a descriptor of the class of data to which the sensitive data belongs. The system will also display an AR overlay for each AR marker. For each user, the AR overlay for each AR marker will include none, some, or all of the sensitive data corresponding to the AR marker. The amount of the sensitive data that will be displayed will depend on the user's authorization level.
Abstract:
A system and method for enhancing images including an image capture device operably connected to a data processing device that captures an image of a target vehicle, and a processor-usable medium embodying computer code, said processor-usable medium being coupled to said data processing device, said computer program code comprising instructions executable by said processor. The instructions configured for identifying a region within the image including a window of the target vehicle, applying a first image enhancement effect to the identified region, applying a second image enhancement effect to a remainder of the image not including the identified region, the second image enhancement effect different than the first image enhancement effect.
Abstract:
To print a certified document, a user may select or a system may receive a selection of a document to be certified. The system identifies a security template to be used based on the document and/or capabilities of the print device on which the document will be printed. The system may display the document with a non-secure overlay of the selected security template, add a unique security element to the document according to the template, and cause the document to be printed at the selected print device with the added security element without permitting the added security element to be fully displayed or printed on any other device.
Abstract:
A processor controls a marking engine to print a uniform region having a visually uniform color for an observer within all areas of the uniform region. The processor also controls the marking engine to print different gloss patterns within the uniform region. The different gloss patterns have first and second gloss regions, and the gloss difference between the first and second gloss regions forms gloss marks. Additionally, the processor controls the marking engine to print different infrared patterns within the uniform region to form infrared marks. In some embodiments, the infrared patterns are only within the first gloss regions and are not within the second gloss regions.
Abstract:
A method of extracting data embedded in a 3D object includes a 3D scanning device scanning a 3D object and extracting data embedded as physical representations in the 3D object. A processing device will identify, from the extracted data, instructions for causing the processing device to perform an action such as identifying building instructions for printing a copy of the 3D object. The processing device will also perform the action to identify the building instructions, and cause a 3D printer to use the building instructions to print the copy of the 3D object. The processing device may be part of the 3D scanning device or part of another device or system that is in communication with the 3D scanning device.
Abstract:
A method of extracting data embedded in a 3D object includes a 3D scanning device scanning a 3D object and extracting data embedded as physical representations in the 3D object. A processing device will identify, from the extracted data, instructions for performing an action on the data such as: displaying at least a portion of the data, transmitting at least a portion of the data to an external database, transmitting at least a portion of the data to an external application, or receiving user input for handling the data. The processing device may be part of the 3D scanning device or part of another device or system that is in communication with the 3D scanning device. The method includes performing the action, and returning a result of the action to a user of an electronic device. It may also include receiving a user selection of the portion of the data.
Abstract:
A method of creating a confidence map for an electronic fillable form may include identifying, by an electronic device, one or more fillable fields of an electronic fillable form. The method may include, for one or more of the identified fillable fields, assigning one or more first coordinates of the electronic fillable form to define a graphical zone associated with the fillable field, assigning one or more second coordinates of the electronic fillable form to define a fill zone, assigning one or more third coordinates of the electronic fillable form to define a click zone, and assigning, by the electronic device, one or more fourth coordinates of the electronic fillable form to define a start zone representing a most likely selection area for the fillable field. The method may include creating, a confidence map associated with the electronic fillable form.
Abstract:
A document may include a non-magnetic substrate, a first colorant mixture printed as a first image upon the substrate, the first colorant mixture including a magnetic ink, and a second colorant mixture printed as a second image upon the substrate in substantially close spatial proximity to the printed first colorant mixture. The second colorant mixture may consist essentially of one or more non-magnetic inks and exhibit properties of both low visual contrast and high magnetic contrast against the first colorant mixture, such that the resultant printed substrate does not reveal the first image to the human eye, but will reveal the first image to a magnetic image reader.
Abstract:
A package design system creates a package design file. The file includes comprises a two-dimensional representation of a three-dimensional structure having a plurality of facets having alternative design scenarios that can be selected based on conditions of the cutting and/or folding device that is used to create the package. An example of such a condition is a thickness of a substrate that is being processed by the device. The system creates the file by creating a set of cut and/or fold line definitions. At least one of the cut and/or fold line definitions will be a variable cut/fold line definition. For each identified variable cut/fold line definition, the system identifies one or more alternate parameters for the variable cut/fold line definition, a first cutting/folding scenario that will not use the alternate parameters, and a second cutting/folding scenario that will use the alternate parameters.
Abstract:
A method of creating an electronic file corresponding to a printed artifact may include receiving an image file of a document page. The method may include analyzing the image file to detect a potential form identifier on the document page and automatically (without human intervention) performing a search to identify an actual form that corresponds to the potential form identifier. The method may further include validating that the image file is of a document page that corresponds to the actual form, locating a probable fill-in field on the document page and mapping the probable fill-in field to an actual fill-in field of the actual form.