Abstract:
A gravity-assisted registration system suited to use in a printing device includes a transport member with a surface on which an associated sheet is translated in a process direction. The surface defines an angle with respect to horizontal in a cross-process direction. A registration wall, adjacent a lower end of the surface, defines a registration edge for registering the sheet. A drive mechanism drives at least one rotation mechanism, for translating sheet in the process direction, each rotation mechanism including at least one drive member with an axis of rotation parallel to the surface in the cross-process direction, Each drive member includes a sliding mechanism, at a periphery of the drive member, enabling the sheet to slide, under gravity, on the surface, toward the registration wall into an alignment position, in contact with the registration wall.
Abstract:
A three-dimensional object printer comprises a conveyor having a surface configured to convey a three-dimensional object in a first direction; and a leveling assembly configured to level a surface of the three-dimensional object as the conveyer conveys the three-dimensional object in the first direction, the leveling assembly comprising (i) a roller having a cylindrical shape, the roller having an outer surface that moves upon the surface of the three-dimensional object to level the surface of the three-dimensional object; and (ii) a guide device arranged between the roller and the planar surface of the conveyer, the device being configured to mechanically interact with the roller to maintain a constant distance between the outer surface of the roller and the planar surface of the conveyer.
Abstract:
A gravity-assisted registration system suited to use in a printing device includes a transport member with a surface on which an associated sheet is translated in a process direction. The surface defines an angle with respect to horizontal in a cross-process direction. A registration wall, adjacent a lower end of the surface, defines a registration edge for registering the sheet. A drive mechanism drives at least one rotation mechanism, for translating sheet in the process direction, each rotation mechanism including at least one drive member with an axis of rotation parallel to the surface in the cross-process direction, Each drive member includes a sliding mechanism, at a periphery of the drive member, enabling the sheet to slide, under gravity, on the surface, toward the registration wall into an alignment position, in contact with the registration wall.
Abstract:
A method of manufacturing a three-dimensional object facilitates the removal of support material from the object. The method includes forming at least a portion of a support for the object with support material containing nanoparticles of a material that readily converts microwave energy into heat. The object and support are moved to a position opposite a microwave radiator and the microwave radiator is operated to begin a change of the phase of the portion of the support material containing the nanoparticles before beginning a change of the phase of a portion of the support made from the support material alone. A controller either monitors the expiration of a predetermined time period or a temperature of the object to determine when the microwave radiator operation is terminated.
Abstract:
Methods and systems related to the three-dimensional (3D) printing of build structures including a plurality of 3D objects embedded within a support matrix are provided.
Abstract:
A three-dimensional object printer comprises a platen, an ejector head having a plurality of ejectors configured to eject drops of material toward the platen, a sensor configured to measure heights of drops of material ejected onto the platen, and a controller operatively connected to the sensor and the ejector head. The controller is configured to operate the plurality of ejectors to eject drops of material toward the platen to form a first layer of material upon the platen; operate the sensor to measure a height profile of the first layer of material; and operate the plurality of ejectors to eject drops of material toward the platen to form a second layer of material upon the first layer of material with reference to the measured height profile.
Abstract:
A method of operating a cleaning system removes support material from parts made by a three-dimensional printer. The method operates the cleaning system to correlate data for features on a part located within a receptacle with structural data in a file used by the three-dimensional printer to fabricate the part. The method then operates one or more actuators to locate a fluid directing nozzle pneumatically connected to a pressurized fluid source opposite areas containing support material and operates the pressurized fluid source to enable pressurized fluid to be directed by the fluid directing nozzle at the support material. The method includes generating image data of the cleaned areas with an image sensor so the removal of the support material can be confirmed, and if an area is not sufficiently cleaned, the cleaning operation can be repeated.
Abstract:
A method of manufacturing a three-dimensional object facilitates the removal of support material from the object. The method includes moving the object to a position opposite a microwave radiator and operating the microwave radiator to change the phase of the support material from solid to liquid. A controller either monitors the expiration of a predetermined time period or a temperature of the object to determine when the microwave radiator operation is terminated. The microwave radiation does not damage the object because the support material has a dielectric loss factor that is greater than the dielectric loss factor of the object.
Abstract:
A printer compensates for printing errors occurring during production of the layers for the formation of an object in a three-dimensional printer. The printer includes an optical sensor that generates data corresponding to edges of each layer of the object after each layer is printed. Differences between the raster data used to eject the material to form a layer and the data received from the optical sensor are used to modify the raster data that operates a printhead to form a next layer in the object.
Abstract:
A three-dimensional object printer has a platen that is configured to facilitate the release of objects formed on the platen. The platen includes a first layer and second layer, the first layer having a coefficient of thermal expansion that is different than a coefficient of thermal expansion of the second layer. A controller in the printer is configured to operate at least one ejector in an ejector head to form a three-dimensional object on the surface of the platen with reference to digital image data and, upon completion of the object, to operate a temperature control device operatively connected to the platen to bend the platen by changing the temperature of the platen and releasing a three-dimensional object from the platen.