Abstract:
The present invention discloses a method for mapping physical random access channels, which comprises the following steps: the PRACHs in the same time domain location are mapped from low frequency to high frequency, or from high frequency to low frequency in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap; or the PRACHs in the same time domain location are mapped from two sides to the middle in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap. The present invention enables uniformly distributing the PRACHs which require to be processed by the same base station in the time domain, and decreasing the inter-cell interference of the second type PRACH to the utmost extent at the same time.
Abstract:
A method for reporting channel state information is provided in the invention, which includes: an eNB (eNodeB) indicating UE to feed back CSI (channel state information) reporting of one or multiple component carriers at a time; the UE feeds back the CSI reporting of one or multiple component carriers at a time according to the indication of eNB. The invention also provides an eNB, which is configured to: indicate UE to feed back CSI reporting of one or multiple component carriers at a time. In the invention, the problem how the UE performs channel state information reporting for multiple (downlink) component carriers in the LTE-A system is solved, which can not only ensure the reliability of transmitting channel state information but also reduce the feedback delay of channel state information as soon as possible.
Abstract:
The method for controlling signal transmission comprises: determining the first reference variable according to the number of transition points from downlink to uplink in a wireless frame of the system and the system frame number (S502); determining the second reference variable according to the number of transition points from downlink to uplink in a wireless frame and the time slot number (S504); determining the third reference variable according to the sub-frame offset of the signal (S506); and determining signal transmission times according to the first reference variable, the second reference variable and the third reference variable, so as to control the signal transmission (S508). In virtue of the technical solution of the present invention, by calculating the corresponding reference variables according to related parameters and treating the sum of the corresponding reference variables as the transmission times, the continuous SRS transmission times can be calculated, and the aim can be achieved that the UEs with the same SRS period have the same SRS transmission times at the same time, and the transmission times increase continuously for the UE, thereby the perfect frequency hopping performance can be obtained.
Abstract:
The present invention discloses a method for configuring and indicating physical random access channel parameter in a time division duplex system, suitable for the long term evolution, system, including: the same PRACH configuration set is stored in a base station and a terminal respectively; when performing a PRACH configuration, the terminal inquires the PRACH configuration set according to configuration information to obtain a configuration parameter, and/or the terminal computes to obtain the configuration parameter according to a system parameter. Set by using the method provided by the present invention, the PRACH configuration set can provide enough density types for various PRACH formats in order to meet the requirements of different system loads, and meanwhile can provide enough version types for each combination of format and density, decrease the processing load of the base station, and reduce the inter-cell interference.
Abstract:
A method for mapping physical random access channel (PRACHs) is provided in the present invention, wherein W PRACHs have the same time domain location and the serial number of each PRACH is w=0, 1, 2, . . . , W−1. The method includes: mapping the PRACHs with the odd w numbers from high frequency to low frequency, or from low frequency to high frequency in a usable frequency band, mapping the PRACHs with the even w numbers from low frequency to high frequency, or from high frequency to low frequency in the usable frequency band. One PRACH occupies 6 continuous resource blocks in the frequency domain, and the frequency bands occupied by the two adjacent PRACHs in the frequency domain do not overlap, furthermore the same mapping process is used for each version number r. The PRACHs which need to be processed by the same station could be distributed evenly in the time domain, and at the same time the inter-cell interference of the second type PRACH could be reduced to the greatest extent through the present invention.
Abstract:
A Method for generation of Ncs set and a method for generation of random access preamble are disclosed. The method for generation of Ncs set comprises the following steps: determine an upper limit value Ncs_max of Ncs according to a maximum cell radius value which is required to be supported by a random access channel RACH, and select Ncs values which are less than or equal to the Ncs_max to be elements of an initial Ncs set; calculate a root sequence number Nr corresponding to each element in the initial Ncs set according to formula Nr=┌M/└Npre/Ncs┘┐; and delete elements in the initial Ncs set which have the same Nr value with other elements so as to generate a screening Ncs set in which each element has a different Nr value; if N, the number of the elements in the screening Ncs set, is greater than P, the number of maximum Ncs supported by the system, then delete N−P elements from the set so as to generate a final Ncs set; else regard the screening Ncs set as the final Ncs set; wherein, M is a preamble number required by each cell, and Npre is the length of preamble sequence.
Abstract:
A method and an apparatus for constructing a random access channel of a wireless communication system, in which the method includes the following steps: setting a length of a preamble; setting a length of a cyclic prefix according to the length of the preamble; and setting a random access channel structure consisting of the preamble and the cyclic prefix. The random access channel designed by the method can be flexibly set to transmit in the UpPTS, and can satisfy the demand of a small coverage scenario in a better manner.
Abstract:
A transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. Another transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a cyclic prefix and a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. The methods can avoid the interference of the preamble to the data of the uplink subframe, and can improve the coverage area of the random access channel and the work efficiency of the time division duplex system.
Abstract:
Provided are a method and apparatus for sending Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) information. The method includes: when a terminal employs a physical uplink control channel (PUCCH) format 3 to transmit HARQ-ACK information and the HARQ-ACK information is transmitted over a uplink physical shared channel (PUSCH), determining the number of downlink subframes for serving cells to feed back the HARQ-ACK information; determining the number of encoded modulated symbols required for sending the HARQ-ACK information according to the determined number of downlink subframes; and mapping the HARQ-ACK information to be sent to the PUSCH of a specified uplink subframe according to the number of encoded modulated symbols and sending the HARQ-ACK information. The technical solutions provided by the disclosure are applied to improve the performance of the HARQ-ACK information, and thus improve the data performance.
Abstract:
The present invention provides a method and user equipment for transmitting a physical uplink control channel. The method includes: in a carrier aggregation scenario, based on a predetermined rule, the transmission of the Physical Uplink Control Channel (PUCCH) is switched between a secondary component carrier and a primary component carrier, or the transmission of the PUCCH is only in the primary component carrier, which is selected by the user equipment (UE); and the UE transmitting the PUCCH in the selected component carrier. The present invention reduces the feedback time delay of uplink control information, and improves the utilization of uplink resources.