Abstract:
A buckling structure for buckling a first housing with a first lateral plate and a second housing is provided. The buckling structure includes a first baffle and a second baffle. The first baffle having a first buckling portion is disposed in the first housing and is substantially parallel to the first lateral plate. The second baffle having a second portion is disposed in the second housing. The first buckling portion is buckled with the second buckling portion when the second baffle is inserted between the first baffle and the lateral plate, so that the first housing and the second housing are combined tightly.
Abstract:
The present invention provides an apparatus for supporting electronic equipment. The electronic equipment comprises a groove, a first engagement mechanism and a second engagement mechanism. The apparatus comprises a main body, a first component and a second component. The main body has a turning spindle disposed within the groove. The first component and the second component locate on the main body. While the first component is coupled with the first engagement mechanism, the apparatus extends and the electronic equipment is vertical. While the second component is coupled with the second engagement mechanism, the apparatus retracts and the electronic equipment is horizontal.
Abstract:
Novel use of small molecules, particularly indolyl and indolinyl hydroxamates is disclosed herein. The indolyl and indolinyl hydroxamates are useful as lead compounds for manufacturing a medicament or a pharmaceutical composition for treating a patient suffering from heart failure or neuronal injury.
Abstract:
A method for controlling a cache memory of a solid state drive is provided. The solid state drive has a flash memory. The flash memory has a plurality of blocks, wherein each block has a plurality of pages. The method includes the following steps. Firstly, a refreshed data corresponding to a part of original data in a specified page of the flash memory is received and stored into a first cache unit. Then, the original data is read from the specified page, wherein an unrefreshed part of the original data is stored into the first cache unit, and a to-be-refreshed part of the original data is stored into a second cache unit. Afterwards, the refreshed data and the unrefreshed part of the original data in the first cache unit are stored into a blank page of the flash memory.
Abstract:
A repairing method for a pixel structure including an active device, a pixel electrode connected with the active device, a bottom electrode disposed under the pixel electrode, upper electrodes disposed between the pixel electrode and the bottom electrode and connected with the pixel electrode, a first dielectric layer disposed between the bottom electrode and the upper electrodes and a second dielectric layer disposed between the upper electrodes and the pixel electrode is provided. The repairing method includes removing a portion of the pixel electrode to electrically isolate the contact region over the upper electrode from the remaining portion of the pixel electrode, wherein a storage capacitor is formed by the reserved region over the upper electrode, the second dielectric layer and the remaining portion of the pixel electrode.
Abstract:
A pixel structure including an active device, a pixel electrode connected with the active device, a bottom electrode disposed under the pixel electrode, upper electrodes disposed between the pixel electrode and the bottom electrode and connected with the pixel electrode, a first dielectric layer disposed between the bottom electrode and the upper electrodes and a second dielectric layer disposed between the upper electrodes and the pixel electrode is provided. The total area of the upper electrodes overlapping with the bottom electrode is A, and the overlapping portion of the pixel electrode and each upper electrode includes a contact region and a reserved region having total area B. The dielectric constant and thickness of the first dielectric layer is ∈1 and d1; and for second dielectric layer ∈2 and d2, wherein 0.5
Abstract:
A portable computer and a shock absorber assembly thereof. The portable computer includes a body, a hard disc drive, a supporting member, an isolator, a frame, and a damper. The hard disc drive is disposed in the body. The supporting member is disposed on the hard disc drive. The isolator is disposed on the supporting member. The frame is disposed on the hard disc drive. The damper is disposed on the frame. Thus, the hard disc drive is connected to the body by the isolator, and connected to the frame by the damper. As a result, the vibration generated by the hard disc drive is isolated to avoid affecting the other portions of the portable computer.
Abstract:
A thin film transistor array substrate and method for repairing the same are provided. Each pixel unit of the thin film transistor array substrate has a plurality of upper electrodes, which are coupled to a common line to form a plurality of storage capacitors. If a storage capacitor defects, the portion of the pixel electrode corresponding to the defective storage capacitor is electrically isolated from the other portion of the pixel electrode in the pixel unit. Therefore, the other storage capacitors in the pixel unit can normally display. The thin film transistor array substrate and method for repairing the same provided by the present invention repair the defective storage capacitor in the thin film transistor array substrate and improve the manufacturing yield.
Abstract:
A pixel structure electrically connected to a scan line and a data line, includes an active device, a first pixel electrode, a second pixel electrode, a capacitor coupling electrode and a charge releasing device. The active device is electrically connected to the scan line and the data line. The second pixel electrode is electrically isolated from the first pixel electrode. The capacitor coupling electrode is disposed under the second pixel electrode and electrically connected to the data line through the active device. The charge releasing device is electrically connected to the second pixel electrode. The above-described pixel structure is able to effectively solve the image sticking problem. In addition, further provides an active matrix substrate which is able to avoid the image sticking effect.
Abstract:
An adjustable connector is electrically connected with corresponding signal contacts on a circuit board by a multiple of leaf springs. As a result of the flexibility of the leaf springs, the adjustable connector can move within a small range in relation to the circuit board while keeping in electrical connection with the circuit board so as to adjust the position of the adjustable connector on the circuit board.