摘要:
An organic light emitting device includes a first electrode and a second electrode, an organic layer including a light emitting layer between the first electrode and the second electrode, and an insulating film covering a rim of the first electrode from a surface thereof to a side surface thereof, and having an internal wall surface being in contact with the organic layer, and one or more corner sections in the internal wall surface with a ridge line thereof in parallel with the surface of the first electrode.
摘要:
An ink circulation system includes: an ink-jet head in which a shared ink flowing route is formed, an ink tank, a supply flowing route for supplying ink from the ink tank to the shared ink flowing route, a reflux flowing route for refluxing the ink from the shared ink flowing route to the ink tank, and a differential pressure generating unit for generating a differential pressure in the ink tank. The differential pressure generating unit is equipped with an impeller placed inside the ink tank, and a drive unit placed outside the ink tank. Then, the drive unit operates to turn the impeller, by means of remote driving, for generating a differential pressure between a supply port of the supply flowing route and a reflux port of the reflux flowing route so as to circulate the ink through the ink flowing route.
摘要:
A liquid circulation system includes an inkjet head formed with a common ink flow passage, an ink cartridge, a supply flow passage through which ink is supplied from the ink cartridge to an inlet of the common ink flow passage, a return flow passage through which the ink is returned from the outlet of the common ink flow passage to the ink cartridge, a tube pump sending the ink in the supply flow passage, a tube pump sending the ink in the return flow passage, a pressurization bellows unit pressurizing the ink in the supply flow passage, a pressure reduction bellows unit depressurizing the ink in the return flow passage, a pressurization regulator maintaining the inlet being a center value “+α” of a designated head value, and a differential pressure regulator by which a differential pressure of the ink between the inlet and the outlet is maintained to be “2α”.
摘要:
A display unit includes, on a substrate, a plurality of organic EL devices, and an insulating film provided in an inter-device region between the plurality of organic EL devices, the insulating film including a groove in a position between the organic EL devices adjacent to each other.
摘要:
An organic light emitting device includes a first electrode and a second electrode, an organic layer including a light emitting layer between the first electrode and the second electrode, and an insulating film covering a rim of the first electrode from a surface thereof to a side surface thereof, and having an internal wall surface being in contact with the organic layer, and one or more corner sections in the internal wall surface with a ridge line thereof in parallel with the surface of the first electrode.
摘要:
A display unit capable of being simply designed and manufactured by using more simplified light emitting device structure while capable of high definition display and display with superior color reproducibility and a manufacturing method thereof are provided. The display unit is a display unit (1), wherein a plurality of organic EL devices (3B), (3G), and (3R), in which a function layer (6) including a light emitting layer (11) is sandwiched between a lower electrode (4) made of a light reflective material and a semi-transmissive upper electrode (7), and which has a resonator structure in which light h emitted in the light emitting layer (11) is resonated using a space between the lower electrode (4) and the upper electrode (7) as a resonant section (15) and is extracted from the upper electrode (7) side are arranged on a substrate (2). In the respective organic EL devices (3B), (3G), and (3R), the function layer (6) is made of an identical layer, and an optical distance L of the resonant section (15) is set to a value different from each other so that blue, green, or red wavelength region is resonated.
摘要:
Provided is a polarizing element, which is made into an assembly of metal elements by utilizing the fact that the plasmon resonance wavelengths of metal elements are different for the polarization direction of a light to irradiate the metal elements. The sum of the geometrically sectional areas of the metal elements in a plane substantially normal to the propagation direction of the irradiating light is smaller than the area of the irradiated region of the light, and the sum of the absorbing sectional areas of the metal elements in the plasmon resonance wavelengths is five times or more as large as the area of the irradiated region.
摘要:
A groove portion to stay the adhesive agent penetrated into either one of closely contacted surfaces of the rod lens and the optical filter is formed, thereby, the penetration of the adhesive agent into the optical path is prevented.
摘要:
An anti-overloading device for use in a restraint-camming apparatus in which the apparatus includes a linear guide for guiding an associated operating member in reciprocating movement and a restraint cam for reciprocating the operating member in its movement has a toggle assembly that which is fixed to the operating member. The toggle assembly comprises a “U”-shaped body, two support links that are rotatably connected to the free ends of opposite free ends of the toggle assembly body portion that engages the ends of the links, and a cam follower rotatably supported by the pin. The cam follower is engaged with the restraint cam to thereby put the restraint cam in a controlled restraint position between the cam follower and a counterpart cam follower roll that is fixed to the operating member. The toggle assembly permits the anti-loading structure can be reduced in size, still permitting the setting of an increased permissible load.
摘要:
A sensor element includes a light detecting section (2), a wiring section and a microlens section (7, 8). The light detecting section (2) is formed to be spaced from a substrate (1) to detect an incident light. The wiring section is composed of leg sections (3, 4) and outputting sections (11, 12) formed to be spaced from the substrate in a peripheral portion of the light detecting section. The wiring section connects the detecting result of the light detecting section to patterns on the substrate. The microlens section is formed to be spaced from the light detecting section to collect and output the incident light to the light detecting section. An area of the light detecting section is equal to or smaller than ¼ of an area of the sensor element. The sensor element may further include a reflecting film formed under the light detecting section to reflect the incident light which passes through the light detecting section.