Abstract:
A method for launching/constructing a bridge using assembly of a precast bottom plate and a concrete-filled steel tube truss girder, wherein a CFT truss girder and a precast bottom plate are provisionally assembled, thereby forming a segment, and then a plurality of segments are successively launched, thereby constructing a bridge.
Abstract:
An apparatus and method for protecting a communication device of a railroad car is provided. The apparatus includes an antenna portion configured to include main antennas and an auxiliary antenna, a main receiver configured to check a magnitude of a received signal transferred through the main antennas of the antenna portion, an auxiliary receiver configured to check a magnitude of a received signal transferred through the auxiliary antenna of the antenna portion, and a controller configured to compare the magnitude of the signal received by the main receiver and the magnitude of the signal received by the auxiliary receiver, determine whether there is a jamming signal according to a comparison result, and take a preset countermeasure when it is determined that there is a jamming signal.
Abstract:
A wireless sensor device includes: an energy harvester configured to convert vibration generated from a broadband vibration source into electricity, an elastic member arranged to receive the vibration and a communication unit fixed by the elastic member, supplied with the converted electricity from the energy harvester, and configured to transmit sensing information obtained by sensing a measurement target. The elastic member operates as a mechanical filter configured to limit a frequency range and an acceleration magnitude of the vibration to be transferred to the communication unit for stabilizing the performance of the communication unit, and the communication unit is arranged to receive vibration passing through the elastic member.
Abstract:
Provided is versine trolley-type equipment for inspecting a track irregularity, having sensors respectively provided to a trolley so as to measure a height difference, direction misalignment, gauge irregularity, rail longitudinal slope, cant and the like of railroad rails, and simultaneously measuring the height difference and direction misalignment of a left rail and a right rail so as to reduce a measurement time by half and, also, allowing left and right measurement frames to freely move in a vertical direction within a predetermined range, thereby bringing front and rear trolley wheels of the left and right measurement frames into close contact with the rails all the time even if the rails are warped.
Abstract:
A railroad vehicle monitoring system installed on a railroad vehicle includes: wireless sensor devices installed at attached equipment of the railroad vehicle, including a sensor that senses statuses of the attached equipment, configured to wirelessly transmit a sensing value sensed by the sensor in real time, and including an energy harvester configured to convert energy generated by running of the railroad vehicle into electric energy, and supply the electric energy as a power source for the sensor, a signal process in the sensing value, and wireless communication of the sensing value; sink node devices configured to wirelessly receive the sensing value and output, in real time, railroad vehicle status information obtained by integrating the received sensing value; and a vehicle status monitoring device configured to receive the railroad vehicle status information, integrate and manage the railroad vehicle status information, and output the integrated railroad vehicle status information in real time.
Abstract:
Provided is an orientation control device for a magnetic fluid, includes: a magnetic fluid having magnetic nanoparticles; an induction power generation unit configured to include a silicone tube through which the magnetic fluid passes and a solenoid coil which is wound around a predetermined section outside the silicone tube to generate induced power when the magnetic fluid passes through an inner side of the silicone tube; and a magnetic pole direction control unit configured to include a silicone tube at an entrance portion of the induction power generation unit and a solenoid coil wound around a predetermined section outside the silicone tube and generating a flux when a current flows therein so as to control pole orientation of the magnetic fluid.
Abstract:
Disclosed is a non-contact power feeding apparatus using a conductive fluid, through which an electric railroad vehicle or a trolleybus receives required power from a contact wire in a non-contact state by using the conductive fluid. The non-contact power feeding apparatus according to the present invention includes: a fluid injection hole defined in a vehicle to inject the conductive fluid toward the contact wire; a conductive fluid container for supplying the conductive fluid that is injected through the fluid injection hole; a pressing pump for injecting the conductive fluid within the conductive fluid container through the fluid injection hole; and a current collection terminal disposed on a side of the fluid injection hole to receive the power from the contact wire in a non-contact manner by using the conductive fluid as a medium. According to the present invention, since the conductive fluid is injected toward the contact wire through the fluid injection hole to feed the power in a non-contact manner, wear-out of the power feeding apparatus and the contact wire does not occur and thus costs for maintenance and repair can be reduced.
Abstract:
A structure for reducing a tunnel micro pressure wave is provided. The structure includes a hood structure formed in front of an entry of a railroad tunnel; and an air pipe section in which at least one air pipe is provided along the circumference of the hood structure, wherein the air pipe comprises a horizontal introduction section formed to be extended from an internal side of the hood structure toward a longitudinal direction of the hood structure, an outlet section formed on an external side of the hood structure, and an intermediate section connecting the horizontal introduction section and the outlet section through each other.
Abstract:
The invention relates to a tunnel excavation device, which includes an excavation head, a main body on which the excavation head is rotatably mounted, a motor provided in the main body and rotates the excavation head, and a controller for controlling the motor, wherein the excavation head includes a perforating means formed by maintaining a predetermined interval from the center of a body part, which has a front surface formed in the shape of a circular plate, to the outer surface of the body part, an injection means for injecting water and liquid nitrogen into the hole formed by the perforating means, and a plurality of cutters provided on the surface of the main body for crushing the bedrock.
Abstract:
The present invention relates to an absolute position detection system. More particularly the present invention relates to a system for detecting an absolute position on a vehicle travel path. For example, disclosed is an absolute position detection system comprising: a plurality of pattern units arranged at a predetermined spacing on a vehicle travel path and having one or more first patterns and one or more second patterns having light reflectances that differ from each other; a pattern scan unit installed in a vehicle to scan each of the plurality of pattern units by laser beam and measuring light reflectance for each of the first and second patterns; a data processing unit for comparing the measured light reflectance and a preset reflectance light reflectance, and performing binary data processing on the result of the comparison to recognize each of the plurality of pattern units; and a position detection unit for detecting the absolute positions of the plurality of pattern units by means of the processed binary data and information on the distance between the plurality of pattern units.