摘要:
N-state switching tables are transformed by a Lab-transform into a Lab-transformed n-state switching table. Memory devices, processors and combinational circuits with inputs and an output are characterized by the Lab-transformed n-state switching table and perform switching operations between physical states in accordance with a Lab-transformed n-state switching table. The devices characterized by Lab-transformed n-state switching tables are applied in cryptographic devices. The cryptographic devices perform standard cryptographic operations that are modified in accordance with a Lab-transform.
摘要:
Methods, apparatus and systems for error correction of n-valued symbols in codewords of p n-valued symbols with n>2 and for n=2 and k information symbols have been disclosed. Coders and decoders using a Linear Feedback Shift Registers (LFSR) are applied to generate codewords and detect the presence of errors. An LFSR can be in Fibonacci or Galois configuration. Errors can be corrected by execution of an n-valued expression in a deterministic non-iterative way. Deterministic error correction methods based on known symbols in error are provided. Corrected codewords can be identified by comparison with received codewords in error. N-valued LFSR based pseudo-noise generators and methods to determine if an LFSR is appropriate for generating error correcting codes are also disclosed. Methods and apparatus applying error free assumed windows and error assumed windows are disclosed. Systems using the error correcting methods, including communication systems and data storage systems are also provided.
摘要:
Methods and apparatus for implementing an n-state ripple-adder scheme coder with n≧2 using an n-state reversible switching function and a non-reversible n-state switching function acting upon a first and a second word of at least 2 n-state symbols are disclosed. Corresponding decoding methods and apparatus are also disclosed. A resulting codeword may be a codeword which can be decoded by using the identical or different n-state switching functions in a corresponding ripple adder scheme decoder. Feistel networks and LFSRs apply the coding and decoding. Systems using the coding and decoding methods may be communication, storage and/or financial systems.
摘要:
Reversible and self reversing multi-value scrambling functions created by applying multi-value inverters are disclosed. The generation of possible multi-value inverters is also presented. Corresponding multi-value descrambling functions are also disclosed. The multi-value functions are used in circuits that scramble and descramble multi-value signals. The multi-value functions can also be used in signal generators. Such signal generators do not require the use of multipliers. The auto-correlation of the signals generated by the signal generators is also presented. Electronic circuits that implement the multi-value functions are also described.
摘要:
Methods and apparatus for coding and decoding n-state symbols with n≧2 and n>2 and n>3 and n>4 are provided wherein at least one implementation of an addition over an alternate finite field GF(n) and an inverter defined by a multiplication over the alternate finite field GF(n) are provided. Encoders and decoders implementing a single n-state truth table that is a truth table of an addition over an alternate finite field GF(n) modified in accordance with at least one inverter defined by a multiplication over the alternate finite field GF(n) are also provided. Encoders include scramblers, Linear Feedback Shift Register (LFSR) based encoders, sequence generator based encoders, block coders, streaming cipher encoders, transposition encoders, hopping rule encoders, Feistel network based encoders, check symbol based encoders, Hamming coder, error correcting encoders, encipherment encoders, Elliptic Curve Coding encoders and all corresponding decoders. Systems applying encoders and decoders also are provided.
摘要:
N-valued re-circulating latches using n-valued reversible inverters with n>3 are disclosed. Latches using n-valued self-reversing inverters are provided; latches using n-valued universal inverters are provided; and latches using inverters which are not self-reversing or universal are also provided. A latch may use two individually controlled gates. It may also use one individually controlled gate. N-valued latches are provided wherein a state is represented by a signal being an independent instance of a physical phenomenon. A latch not using absence-of-signal as a state is also provided.
摘要:
Methods and apparatus to implement LFSRs and LFSR based sequence generators, detectors, scramblers and descramblers by addressable memory are disclosed. The methods and apparatus may be processing binary or n-valued symbols, with n>2. Methods to uniquely characterize n-valued Gold sequence are also disclosed. Self-synchronizing methods to detect sequences which can be decomposed into unique words are also disclosed. Methods and apparatus to implement Fibonacci and Galois LFSRs are disclosed.
摘要:
An n-valued switch with n≧2 and n>2 and n>7, with an input enabled to receive a signal in one of n states, an output enabled to provide a signal in one of at least 2 states, under control of a control signal having one of at least 2 states is disclosed. Signals are instances of a physical phenomenon, an instance representing a state. N-valued inverters are also disclosed. Different types of signals are disclosed, including optical signals with different wavelengths, electrical signals with different frequencies and signals represented by a presence of a material. A kit including an n-valued switch is also disclosed.
摘要:
Apparatus and method for performing multi-value arithmetic operations are disclosed. Multi-value signals can be added, subtracted and multiplied using a first truth table to generate a residue and a second truth table to generate a carry. Additionally, method and apparatus to efficiently perform the function a0b1+a1b0 on multi-value signals are disclosed. Also an efficient method of processing large binary signals is disclosed.
摘要:
Apparatus and method for performing multi-value arithmetic operations are disclosed. Multi-value signals can be added, subtracted and multiplied using a first truth table to generate a residue and a second truth table to generate a carry. Additionally, method and apparatus to efficiently perform the function a0b1+a1b0 on multi-value signals are disclosed. Also an efficient method of processing large binary signals is disclosed.