摘要:
The invention relates to a laying vehicle for laying electric lines (8) in the grooves (6) of an inductor (4), for example a longitudinal stator of a maglev railway. The laying vehicle contains a first, preceding vehicle part (11) comprising a bending and offset unit (14) for configuring winding undulations, a second following vehicle part (16) comprising a pressing station (18) for pressing limbs (8a) of the undulations into the grooves (6), the second vehicle part (16) being displaceable in relation to the first vehicle part (11) and a slide (15) that is coupled in a driven manner to the first vehicle part (11), for transferring the undulations to the second vehicle part (16). According to the invention, a delivery unit (27), which is coupled to the second vehicle part (16), is located between the slide (15) and the pressing station (18), said unit receiving the limbs (8a) from the slide (15) and transferring them to the pressing station (18) at essentially constant intervals.
摘要:
A method for producing stator packs for long-stator linear motors of magnetic levitation vehicles is described. At first steel sheets are stacked to form a sheet stack, cross members are inserted into grooves of the sheet stack and the sheet stack and the cross members are connected with each other to form a solid structural unit. Further it is provided to so insert the structural unit into an open-top casting mold that the cross members are laid onto rims of the casting mold by means of head parts provided at their ends and are positioned by means of positioning pins provided at said ends. Afterwards the filling of the casting mold with a casting resin mixture takes place, advantageously pressureless, for the formation of a corrosion protection layer surrounding the sheet stack. After the hardening of the casting resin mixture the finished stator pack can be removed from the casting mold.
摘要:
A device is provided for installing at least one linear motor line in the grooves (14) of an inductor (15) which is situated underneath a cover plate (10). The device includes a vehicle (31) which can be moved on the cover plate (10), a supply (34) of line (16), a device (36, 40) for forming the meander of the line (16), a device (35) for drawing the line (16) from the supply (34) and for delivering the line (16) to the device (36) and a tool (42) for pressing the line (16) into the grooves (14). The line may be installed automatically, even if the spacing of the grooves varies in dimension, by providing for an assembly slide (46) which can be moved in relation to the vehicle (31). The slide is located at least partially under the cover plate (10) and the device (36, 40) and tool (42) are located thereon. A measuring device (52) for measuring the position and the spacing (A) of the grooves (14) is also provided, as is a computer for processing the measuring data and for controlling the position of the assembly slide (46), the forming device (36, 40) and the tool (42). A corresponding method is also provided for installing at least one linear motor line.
摘要:
A magnetic bearing may include an inner ring and an outer ring arranged concentrically. The inner ring and the outer ring may be mounted rotatably relative to each other by way of axial and radial magnets. The magnetic bearing may also include a back-up bearing, which is integrated into at least one of the outer ring or the inner ring both in an axial direction and in a radial direction. The outer ring may be multipiece and may include a recess that opens inwards and receives the inner ring. Further, the back-up bearing may be made of aluminum, austenitic steel, bronze, or ceramic, and the back-up bearing may operate as a shielding device that shields magnetic fields emitted by the axial and radial magnets from one another.
摘要:
An elevator installation is proposed having at least one car which is vertically movable upwardly and downwardly by means of a linear motor, the linear motor having stationary primary parts and a secondary part which is fixed to the car. In order to improve the elevator installation in such a way that it can be installed in a simpler manner, the elevator installation has a multiplicity of support segments on which in each case at least one primary part is mounted, in each case a support segment in combination with the at least one primary part mounted thereon forming a prefabricated drive module which is adapted to be handled independently, and the drive modules being stackable one on top of the other and forming a travel path along which the at least one car is movable.
摘要:
The invention relates to a magnetic bearing and to a method for operation thereof. The magnetic bearing contains a ferromagnetic, movably mounted bearing element (1) and at least two magnetic devices (3o, 3u) arranged on opposing sides of the bearing element (1) and equipped with windings (6), wherein during operation of the magnetic bearing, electric currents are conducted through the windings (6) and these currents are regulated such that in an equilibrium state between the bearing element (1) and the two magnetic devices (3o, 3u), bearing gaps (10o, 10u) of predetermined size (So, Su) form. According to the invention, the temperatures produced in the magnetic devices (3o, 3u) during operation are measured and the regulation of the currents takes place such that in the equilibrium state, regardless of the load situation, the same temperatures appear in the magnetic devices (3o, 3u) or in the windings (6) thereof (FIG. 1).
摘要:
A magnet pole for magnetic levitation vehicles includes an iron core (1) having an upper pole surface (2), a lower contact surface (3) for a magnet rear side (4) and a circumferential surface (5) disposed between the pole surface (2) and the contact surface (3). A coil (6) is applied onto the circumferential surface (5) of the iron core (1). An intermediate layer is made of an electrically insulating material, which is disposed between the circumferential surface (5) and the coil (6). A protective layer (9) encapsulates the coil (6). At least the pole surface (2) of the iron core (1) is made of a hard material and abuts the circumferential surface (5) in a lower region of the iron core (1). The protective layer (9) contains a section (15) made of an elastic material in a region adjacent to the circumferential surface (5).
摘要:
The invention relates to a maglev railway comprising a support and drive system of the long stator-linear motor type, magnetic support poles that are situated in the vehicle being additionally provided with linear generator windings (10) that generate electric energy in the vehicle. The aim of the invention is to prevent unwanted, periodic vibrations (ripples) from being generated at low speeds. To achieve this, according to the invention, the teeth (5) and grooves (6) of the long stator (3) are arranged in high-speed sections (2a) parallel to the cores and the linear generator windings (10) of the support magnets provided in said cores and in low-speed sections (2b) obliquely to said cores (7) and linear generator windings.
摘要:
A maglev vehicle is provided including a nose and/or tail section (1, 1b) containing a plurality of guidance magnets (FM1 to FM6) which are formed of cores (15) and windings (24) wound onto said cores and connected to control circuits (17). The guidance magnets (e.g. FM1 to FM3) are provided with an at least partially higher number of windings (24) in a front zone of the nose section (1) in relation to the direction of travel (v) or in the rear zone of the tail section (1b) in relation to the direction of travel (v).
摘要:
A magnetic polar arrangement which is intended for magnetic levitation vehicles is described, the magnetic polar arrangement having at least one magnetic pole (22) with a core (6) which defines a magnetic pole surface (23), and with a winding (5) which is set back with respect to the magnetic pole surface (23) in order to form a free space (24). The magnetic pole (22) is provided with a sensor which contains a sensor head (9a), which is arranged at least partially in the free space (24), and an electronic module (9b). According to the invention the sensor head (9a) is physically separated from the electronic module (9b) and is combined, at least with the core (6), to form a single-piece structural unit which is surrounded by a common anti-corrosion layer (26).