Abstract:
Communication transmission methods and systems are provided. Firstly, a base station is configured to set an indicator for determining whether a first wireless communication technology and a second communication technology are allowed simultaneously for transmissions by the base station. Then, a user equipment, is configured to receive a voice call by a user equipment from the base station and determine whether to answer the voice call using the first wireless communication technology or the second communication technology, when the first wireless communication technology and the second communication technology are not allowed simultaneously shown by the indicator.
Abstract:
A synchronization method used in a receiving terminal of an orthogonal frequency division multiplexing (OFDM) system is illustrated. The synchronization method includes following steps: (a) receiving an OFDM training symbol at the receiving terminal, wherein the OFDM training symbol includes many sample points; (b) calculating first function values according to the sample points by using a first function; (c) selecting D timing points from many timing points corresponding to the first function values, wherein D first function values of the D timing points are larger than a first threshold value; (d) calculating D second function values of the D timing points by using a second function; and (e) selecting a first timing point from the D timing points, and setting the first timing point as a timing synchronization point, wherein the second function value of the first timing point is a first one greater than a second threshold value.
Abstract:
Automatic provisioning of an access point base station or femtocell. The method may include the femtocell transmitting first information (e.g., location information, signal measurement information, capability information, etc.) to a service provider (e.g., over an IP network). The femtocell may receive second information from the service provider, where the second information includes one or more operational parameters. The operational parameters may include hand-off parameters, admission policy parameters, PN or scrambling codes, power parameters, and/or other parameters. The femtocell may operate according to the received parameters to provide access for a plurality of access terminals in a local area.
Abstract:
A mobile communication device for providing QoS of packet transmission is provided. The packet transmission from and to the mobile communication device is performed by repeating a predetermined number of interlaces by a predetermined cycle. In the mobile communication device, a wireless module transmits a first sub-packet of a first packet and a first sub-packet of a second packet to a mobile communication network, and receives a response message corresponding to the first sub-packet of the first packet from the mobile communication network, wherein the first sub-packet of the first packet is transmitted in a first interlace prior to a second interlace in which the first sub-packet of the second packet is transmitted. Also, a controller module calculates a plurality of QoS parameters for a second sub-packet of the second packet in response to the response message, prepares the second sub-packet of the second packet with the QoS parameters, and transmits the second sub-packet of the second packet in the second interlace to the mobile communication network via the wireless module.
Abstract:
Automatic provisioning of an access point base station or femtocell. The method may include the femtocell transmitting first information (e.g., location information, signal measurement information, capability information, etc.) to a service provider (e.g., over an IP network). The femtocell may receive second information from the service provider, where the second information includes one or more operational parameters. The operational parameters may include hand-off parameters, admission policy information, PN or scrambling codes, power parameters, and/or other parameters. The femtocell may operate according to the received parameters to provide access for a plurality of access terminals in a local area.
Abstract:
System and method for wirelessly communicating between a base station and a mobile device. The base station wirelessly sends a first one or more overhead messages to the mobile device. The first one or more overhead messages may include at least one parameter. The mobile device may wirelessly receive the first one or more overhead messages from the base station, including the at least one parameter. The base station may wirelessly send a second one or more messages to the mobile device according to a schedule based on the at least one parameter. The mobile device may wirelessly receive the second one or more messages according to the schedule based on the at least one parameter. The mobile device may schedule a sleep cycle based on the at least one parameter, which may reduce battery consumption in the mobile device. The second one or more messages may be sent less frequently than the first one or more overhead messages.
Abstract:
The invention provides a video codec. In one embodiment, the video codec is coupled to an outer memory storing a reference frame, and comprises an interface circuit, an in-chip memory, a motion estimation circuit, and a controller. The interface circuit obtains in-chip data from the reference frame stored in the outer memory. The in-chip memory stores the in-chip data. The motion estimation circuit retrieves search window data from the in-chip data with a search window, and performs a motion estimation process on a current macroblock according to the search-window data. The controller shifts the location of the search window when the current macroblock is shifted, marks a macroblock shifted out from the search window as an empty macroblock, and controls the interface circuit to obtain an updated macroblock for replacing the empty macroblock in the in-chip memory from the reference frame stored in the outer memory.
Abstract:
A user equipment for alleviating barred access while reselecting from a first cell to a second cell in a mobile communication system is provided. A wireless module detects receives system information broadcasted in the first cell. A storage unit stores the system information. A controller reselects the user equipment from the first cell to the second cell. Particularly, the cell reselection is not performed during a connection establishment procedure. Also, the controller determines whether a first barred access timer is running in response to reselecting from the first cell to the second cell, and stops the first barred access timer and informs the upper layer of an RRC protocol that the access of the first service is allowed in response of that the first barred access timer is running.
Abstract:
A communication device that includes a femtocell base station and a mobile station transmitter/receiver. The femtocell base station may provide bidirectional internet protocol (IP) communication for one or mobile devices to a cellular network. The femtocell base station may be operable to communicate with the cellular network using a wide area network. The mobile station transmitter/receiver may be coupled to the femtocell base station (in a same housing). The mobile station transmitter/receiver may be operable to perform radio frequency (RF) wireless communication with the cellular network, e.g., to detect and/or report environmental parameters, performing testing (e.g., loopback testing), and/or provide communication for the one or more mobile devices (e.g., when the wide area network is down), among others.
Abstract:
A wireless communications device is provided with a plurality of card slots, a first wireless communications module, and a second wireless communications module. The card slots are inserted with at least one subscriber identity card. The first wireless communications module performs wireless transceiving in compliance with at least a first wireless technology. The second wireless communications module determines at least a first subscriber number and a second subscriber number from the at least one subscriber identity card, and enables the wireless transceiving of the first wireless communications module using the first subscriber number. Also, the second wireless communications module performs wireless transceiving in compliance with at least a second wireless technology using the second subscriber number.