摘要:
The wasting of cutting fluid mists and contamination of a machining environment with cutting fluid mists are prevented by feeding optimum amounts of cutting fluid mists in a variety of machining operations. A main shaft device for machine tools, comprising a tool holder (8) fixed to a main shaft (2), the tool holder (8) being provided with a holder main body (8a), a chuck (18) and a cutting tool stopper member (20), it being arranged that cutting fluid mists inwardly fed into the main shaft (2) pass through a mist passageway formed in the cutting tool stopper member (20) and in a cutting tool (17), whereby they are spouted from the front end surface of the cutting tool (17), wherein the cutting tool stopper member (20) is composed of a main body member (22), and a front member (23) exchangeably fixed to the main body member (22) through a mounting/dismounting means, and, in this case, the front member (23) serves as an adjusting nozzle member for controlling the flow rate of cutting fluid mists flowing out of the main body member (22) into the cutting tool (17).
摘要:
An oil mist discharger (1) is disclosed. The oil mist discharger (1) utilizes a flow regulator (27) which comprises a main passage (28), sub-passages (29) and an agitation chamber (30). Differential pressure between air and oil is created and utilized in drawing oil into an oil feed chamber (39) to be mixed with air. The oil-containing air is sent to the flow regulator (27) and fed into the agitation chamber (30) via the main passage (28) and sub-passages (29) in jet streams to be transformed into a well blended oil mist, which is discharged from a discharge nozzle.
摘要:
A piping device of the present invention includes an oil supply path, a narrower path connected with the oil supply path and having an inside diameter smaller than that of the oil supply path, an air space into which the oil is discharged from the narrower path, a wall defining the air space having a recess, and a plurality of branch paths into which the oil having impinged on the recess flows, wherein a vertex of the recess and an end of the narrower path face each other. This configuration makes it possible to suppress the uneven distribution of a flow rate of oil discharged into the air space. Furthermore, since the vertex of the recess and the end of the narrower path face each other, the discharged flow in which the uneven distribution of the oil flow rate is suppressed can be diverted with respect to the vertex of the recess as the center of the diversion. Thus, it is possible to allow flow rates of oil flowing into the respective branch paths to be substantially uniform with a simple configuration. As a result, it is possible to provide a piping device capable of stabilizing the relationship among flow rates of oil discharged from outlets even with use of a simple configuration, and to provide a cutting oil coater employing the same.
摘要:
The invention provides a mixer for forming a thin oil film on a surface of a drop of water which can effectively form a drop of water with an oil film. A mixer for forming a thin oil film on a surface of a drop of water is constituted by an oil mist forming chamber for forming an oil supplied from an outer portion in a mist shape by an air stream, a drop of water forming chamber for forming a water supplied from the outer portion by the air stream containing the oil formed in a mist shape in the oil mist forming chamber in a drop of water shape so as to form a drop of water with an oil structured such that a thin oil film is formed on a surface of the drop of water, and a top nozzle for discharging the drop of water with the oil film formed in the drop of water forming chamber to an outer portion. In accordance with the structure mentioned above, it is possible to effectively form the drop of water with the oil film.
摘要:
A machining method and a mist supplying apparatus for use in the method, which provide an excellent cooling effect for a rotation shaft without the need for an ejection nozzle. The machining method comprises the steps of: providing a machine tool which includes a rotation shaft (2) rotatably supported by a casing (1); causing compressed air and a liquid to separately pass through the inside of the casing (1) and into the rotation shaft (2); mixing the liquid with the compressed air within the rotation shaft (2) so as to form the liquid into a mist; feeding the resulting mist along the outer periphery of the tool or through the inside of the tool to a distal end of a generally cylindrical tool fixed to the rotation shaft (2); and supplying the mist to a machining part from the distal end of the tool.
摘要:
A liquid coater which includes a mist feed tube (5) for feeding oil mist into an airtight container (2), an air hose (10) for feeding air into the airtight container (2) and a mist conveyor pipe (11) for conveying the oil mist pressurized by air inside the airtight container (2) to the outside of the container. Therefore, droplets and large mist particles can be trapped inside the container from the mist feed tube (5), and the mist can be conveyed at a high speed. The liquid coater has excellent applicability. The mist feed tube (5) has a double tube structure comprising an air tube (7) in which air flows, and an oil tube (6) which extends in the air tube (7) and in which the oil flows. The distal end of the oil tube (6) is positioned more inward than the distal end of the air tube (7), so that the oil mist can be fed by a simple construction.
摘要:
The invention therefore provides a tool holder for tools supplied with coolant or lubricant, especially rotating tools such as boring or milling tools, with an internal duct system for passing coolant or lubricant to the shank of the tool. To enable particularly flexible use of machine tools, the tool holder is equipped according to the invention with a lubricant reservoir which is integrated into the tool holder and which is preferably fillable and pressurizable, which during operation of the tool can be decoupled from a coolant or lubricant source and supplies the tool controllably with coolant and lubricant via a metering unit.
摘要:
A device for mixing and supplying fluids comprises: a fixing unit provided with a first flow path through which a first fluid flows, a second flow path through which a second fluid flows, and a through-hole; and a rotating unit, which is rotatably provided on the through-hole so as to penetrate the fixing unit, and which is provided at the front end with a fixing hole into which a processing tool is inserted and fixed, and a communication part which communicates with the first flow path and the fixing hole, so as to mix the first fluid and the second fluid and supply the mixture to the processing tool.
摘要:
A method of manufacturing a transmission case housing is provided wherein a minimum quantity of lubrication as a compressed air/oil mist is supplied as the housing is rough bored and face milled. The transmission case defines a plurality of transmission fluid drainage holes for draining transmission fluid from the transmission when installed in a vehicle. The housing is positioned with the fluid drainage holes below a central axis of the housing and a plurality of internal bores and faces are bored and face milled on the housing. The compressed air/oil mist is sprayed from the cutting head to cool and lubricate the boring and face milling tools. Machining chips are blown off the rough bored housing through the fluid drainage holes.
摘要:
Devices, systems, and methods are provided for controlling a quantity of cutting fluid dispensed for a cutting tool within a CNC or other machining system. The devices, systems, and methods may include controlling multiple fluids such that coolant, lubricant, or other fluids can be delivered at different locations, at different flow rates, have their flow rates changed independently, and/or have their flow rates changed dynamically during a machining operation. In some embodiments, a feedback loop or input may be provided to obtain and/or provide information regarding the machining operation—such as cutting force, cutting temperature, cutting friction, machining operation, tool in use, work piece geometry, and/or material—and automatically and/or independently modify the fluid flow rates. The fluid may be atomized with air or other gases to minimize the quantities of fluid used. Components in the system may be modular to allow the system to be used with existing and new machining technologies.