Abstract:
A fuel pump apparatus for supplying fuel to an engine includes a lid member is foamed divisionally from a first lid member having a fuel supply path, and a second lid member removably provided on the first lid member and having a fuel inflow path. A fuel filter is disposed between the first lid member and the second lid member. Since the fuel filter is built in the lid member, a protective case for protecting the fuel filter and a stay for attaching the fuel filter to a vehicle body are not required. The fuel pump apparatus so configured eliminates the requirement for a protective case for protecting a fuel filter and an attaching stay for attaching the fuel filter to a vehicle body and can achieve reduction of the cost.
Abstract:
A receiving portion of a heat releasing member made of metal holds a controller, which is installed to the receiving portion through an opening of the receiving portion. An embeddable portion of the heat releasing member is formed at least along a peripheral edge of the opening of the receiving portion and is embedded in a flange, which is made of resin and covers a hole of a fuel tank. A protective member made of resin may cover each connecting portion between a corresponding one of terminals of the controller and a corresponding one of conductive line members. A primer agent coating may be applied to the conductive line members.
Abstract:
An outlet plate of an impeller pump is provided, the outlet plate having an outlet port disposed in the outlet plate, the outlet port being defined by a first outlet port and a second outlet port each extending through the outlet plate; a separator wall located in the outlet port, the separator wall separating an inlet of the first outlet port from an inlet of the second outlet port; and a groove located only on a first surface of the outlet plate, the groove having a first distal end and a second distal end, the first distal end terminating at the first outlet port, wherein the separator separates the groove from the second outlet port.
Abstract:
A fuel pump may include a motor section comprising a rotor and a stator. One of the rotor and the stator may have at least a pair of permanent magnet parts disposed along a first circumferential surface at an interval in a circumferential direction, and at least two magnetic material parts disposed between ends of adjacent permanent magnet parts. The other one of the rotor and the stator may have a first yoke disposed so as to face the permanent magnet parts, wherein a plurality of slots are formed on the first yoke at an interval in the circumferential direction. A surface facing the slots of the magnetic material parts may be shifted, in at least a partial range in the circumferential direction including a permanent magnet part side end where a polarity of a first circumferential surface side is a north pole, from the first circumferential surface in a direction along which a distance to the slots increases.
Abstract:
Fuel systems and methods for cold environments which includes a fuel pump having at least one solenoid coil in an unlaminated magnetic circuit, the fuel pump being disposed in a fuel tank, and a pump drive and pulsing system, the pump drive providing pump actuation current to the solenoid coil and the pulsing system providing short current pulses to the solenoid coil to cause Eddy current losses in the unlaminated magnetic circuit. The method includes, before cranking the engine for starting the engine, providing short, successive current pulses to the solenoid coil to cause eddy current heating in the unlaminated circuit and heating of the fuel in and around the fuel pump, turning on the fuel pump to commence fuel flow to the engine, and cranking the engine for starting after the fuel pump has been turned on. Various features are disclosed.
Abstract:
A fuel pump includes an impeller and a cover. The impeller includes a ring portion, which is annular and is placed radially outward of blades. The cover has an arcuate pump flow passage. An enlarged space is formed in a cover side slide surface of the cover. The enlarged space is communicated with the pump flow passage and has an axial gap size, which is axially measured between an axial bottom surface of the enlarged space and an axial end surface of the ring portion and is larger than that of an axial slide gap between the slide surface and the axial end surface of the ring portion.
Abstract:
Present invention relates to an electric fuel pump for an internal combustion engine in which a single-phase brushless dc motor is rotatably coupled with a roller vane or other pump mechanism so that any type of fuel or combination of fuels can be transferred from the inlet (2) to the outlet (35) of the unit which houses all above mentioned elements providing lubrication and cooling to the above mentioned elements. The fuel flow path is so designed as to provide better cooling to the commutation circuit (10) by placing the commutation circuit (10) as the first element to come into contact with fresh fuel, directing the fuel flow towards the heat sinks of the commutation circuit (10) and placing the stator coils (36) downstream of the fuel flow so that the heat generated by the stator coils (36) is taken away from the commutation circuit (10).
Abstract:
The present invention is a method and system for controlling a motor attached to a variable displacement pump for providing a supercritical fuel and fuel pressure to a plurality of fuel injectors of a vehicle engine. The system includes: a pump having a motor; a tachometer sensor for measuring a rotational displacement of a motor shaft and for sending a tachometer count value to a memory device; an engine control unit configured to generate a rotational displacement vs. pressure profile of the pump based on the displacement value and pressure value; an accumulator attached to the output of the pump; and a control method that allows for a look ahead and prediction of the pump requirements needed in a future cycle based on current demand to allow for an efficient fuel injection pump.
Abstract:
An electric fuel pump includes a pump unit, motor unit, fuel discharge unit, stator holder, magnet wire, connection terminal, first mold resin, driver board assembly, and second mold resin. The motor unit drives the pump unit. The fuel discharge unit includes a discharge port member and discharges fuel supplied from the pump unit through the motor unit. The stator holder is provided to the motor unit and includes a stator support which supports a stator of a motor and a partition which defines the motor unit and the fuel discharge unit. The partition includes a terminal insertion hole and a fuel passage. The magnet wire is wound around a core of the stator. The connection terminal is connected to the magnet wire. The first mold resin molds the core and a connecting portion where the magnet wire is connected to the connection terminal. The driver board assembly is stored in a space formed in the discharge port member and electrically connected to the connection terminal. The second mold resin molds the driver board assembly and a connecting portion where the driver board assembly is connected to the connection terminal.
Abstract:
A fuel supply system comprises an engine control unit (ECU), a fuel pump with a built-in pump motor which is PWM controlled based on a control signal from the ECU, a pump controller for controlling supply of electric power to the pump motor, and sensors for detecting an operating state of the engine. A control section of the pump controller controls to change a frequency to be lower as a duty ratio of a PWM control signal to operate a power transistor of an output circuit is higher and inversely to change the frequency to be higher as the duty ratio is lower.