Abstract:
In a refrigerant cycle system with an ejector pump, refrigerant to be introduced into a nozzle of the ejector pump is heated in a heat exchanger using waste heat from a vehicle engine as a heating source, and any one of a first mode, a second mode and a third mode can be selectively set based on a thermal load of an evaporator. In the first mode, refrigerant circulates from the evaporator toward a radiator only by the ejector pump. In the second mode, refrigerant circulate from the evaporator toward the radiator only by a compressor. Further, in the third mode, refrigerant circulates from the evaporator toward the radiator by using both the ejector pump and the compressor. Accordingly, the waste heat can be effectively recovered while a flow resistance of the refrigerant can be restricted.
Abstract:
The present invention provides a cryogenic refrigerating system for achieving ultra low temperature by sequentially obtaining low temperature through repetition of expansion and evaporation of a mixed-refrigerant in multiple stages. The refrigerating system includes a heat exchanger and a compressor between a final evaporator and a compressor. The heat exchanger causes evaporated refrigerant vapor in a suction tube for the compressor to be heated and to be drawn into the compressor, and causes the refrigerant condensed by a condenser to be supercooled. The refrigerating system includes a plurality of expansion/suction apparatuses connected with one another between the gas/liquid separator and the final evaporator.
Abstract:
A process and apparatus for exchanging heat with condensable fluid are disclosed. In the process, a two-phase fluid is passed through the tubes of a heat exchanger under conditions of temperature and pressure such that the quality of the two-phase flow lies in the range of 0.03 to 0.97. The two-phase fluid is in a state of thermodynamic saturation at both the entry and exit of the heat exchanger. The change in quality of the two-phase mixture passing through the heat exchanger is distributed over the entire heat exchanger. The apparatus according to the invention includes a plurality of connected modular stages, each stage including a heat exchanger, a vapor-liquid separator, a compressor, an ejector and the suitable conduits to establish fluid communication between adjacent stages.
Abstract:
A vehicular air conditioner has a closed path for the circulation of a cooling fluid via a jet pump acting as a compressor, a condenser, an expansion valve and an evaporator, the driving fluid for the jet pump being branched off the output of the compressor and led through a vaporizer subjected to the exhaust heat of the vehicle. The branched-off fluid path includes another pump which may be of the mechanical type or may be another jet pump driven by the output of the vaporizer. For winter driving, the hot gases from the vaporizer may be circulated through the evaporator coil as a heating fluid.