Abstract:
A system and method for storing altimeter setting values on an aircraft display includes simultaneously rendering an altimeter and an active altimeter setting field, and selectively rendering a standby altimeter setting field simultaneously with the altimeter and the active altimeter setting field. An active altimeter setting value is rendered in the active altimeter setting field, and a stored altimeter setting value may be rendered in the standby altimeter setting field. Preferably, the stored altimeter setting value is selectively rendered in the standby altimeter setting field when the standby altimeter setting field is simultaneously rendered with the altimeter and the active altimeter setting field.
Abstract:
Method and device for monitoring a horizontal position of an aircraft rolling on the ground. The device (1) comprises an altimeter (3) and means (4, 6, 8, 10, 12) for detecting, with the aid of measurements carried out by the altimeter (3), an error of an indication of horizontal position emitted by a positioning device (2).
Abstract:
An apparatus and method for cleaning passageways and the like with a two-phase mixture of gas under pressure and an aqueous cleaning solution. The two-phase cleaning mixture is generated in a module and is passed out of the module at a predetermined rate that determines droplet size, velocity and droplet density at the pipeline surface to be cleaned. The droplets impact the walls of the passageway to be cleaned, thereby fragmenting, eroding and removing contaminants in said passageway. These are then flushed out of the passageway by the two-phase flow. The flow of cleaning solution can be steady or pulsed. The apparatus and process include a clean-in-place system that is useful in food, beverage, pharmaceutical and similar process industries.
Abstract:
Systems and methods for managing a visual display in a ground proximity warning system. In one embodiment, a system includes at least one aircraft sensor system operable to acquire aircraft data and a ground proximity warning computer coupled to the aircraft sensor system that is operable to process the aircraft data to generate ground proximity warning data corresponding to a sensed ground obstruction. An indicating system includes at least one visual display device that is operable to display terrain elevations and to display a visual symbol corresponding to at least one of the ground obstructions, wherein at least one of the computer and the visual display device is controllable to selectively alter an appearance of the visual symbol relative to the terrain elevations.
Abstract:
This device furnishes a map for assisting navigation at low-level altitude while representing the zone flown over with points shown in false colors and/or textures or symbols corresponding to the vertical speeds needed to fly over them.
Abstract:
The invention concerns a terrain avoidance method and system for an aircraft. The system comprises a collision alarm device (3) and an auto-pilot device (5) including means (7) for determining a climbing order with optimal slope for the aircraft, means (12) for checking whether a first altitude gain at the relief, by applying the optimal slope climbing order, is sufficient for clearing said relief, means (11) for finding if there exists at least one heading variation value, for which the corresponding altitude gain is sufficient to clear the relief, and means (17, 22) for applying to the aircraft, if the first altitude gain is sufficient, an optimal slope climbing order with an order to maintain the current heading and, if the first altitude gain is insufficient, a particular climbing order sufficient to clear the relief, with a heading order which corresponds to the selected heading variation value.
Abstract:
Systems, methods and computer program products for alerting a flight crew during landing that the tailwind exceeds acceptable limits. The system determines a base tailwind threshold speed for a candidate runway based on a performance constant associated with an aircraft and candidate runway information and determines present tailwind speed. If the tailwind speed is greater than the base tailwind threshold speed, a tailwind alert is generated. Also, the system determines if the aircraft is in a tailwind alerting mode based on configuration of the aircraft and activates tailwind alerting, if it is determined that the aircraft is in the tailwind alerting mode.
Abstract:
A method, computer software product, and system to generate altitude callouts according to proximity to a runway at an airport or heliport includes determining whether the helicopter is flying in proximity to the runway and automatically selecting an altitude threshold increment set based upon the determination. The threshold increment set including a plurality of altitude threshold values. A calculated terrain clearance value is calculated for each of the plurality of altitude threshold values. A suitable warning is automatically generated according to the comparison. Selecting an altitude threshold increment set includes selecting one of the group consisting of first altitude threshold increment set including a plurality of higher altitude threshold values and a second altitude increment set including the plurality of higher altitude threshold values and further including a plurality of lower altitude threshold values.
Abstract:
The device (1) for guiding an aircraft at least over an intermediate trajectory between a first flight trajectory for a low-altitude flight and a second flight trajectory which starts at an initial point, and from which trajectory a parachute drop is carried out, comprises means (9) for determining a point of transition which lies on the first flight trajectory which represents the start of the intermediate trajectory, and which corresponds to the point where the aircraft must exit the first flight trajectory so as to reach the initial point under predetermined flight conditions, and means (13A, 13B) which use the point of transition to aid the guidance of the aircraft between the first and second flight trajectories.
Abstract:
Method and device for determining a safe altitude for an aircraft. The device (1) includes means (2) for determining a clear zone corresponding to a lateral area dependent on the flight of the aircraft, means for determining the highest altitude of the ground that is located under this clear zone, and means (8) for determining a safe altitude, by calculating the sum of said highest altitude and a guard height.