Abstract:
An apparatus for determining torque on bit and bending forces in a drilling assembly. The apparatus includes a body having an inner bore defined by an inner wall and having an outer wall, the body also including first and second light bores disposed between the inner wall and the outer wall and a light emitting assembly arranged and configured to cause a light beam to enter the first and second light bores. The assembly further includes first and second light sensors disposed in or at an end of the first and second light bores, respectively, that measure a location where light that enters the first and second light bores contacts the sensors
Abstract:
An optical sensor, an optical encoder, a torque detection apparatus, and an electric power steering apparatus less affected by fluctuations in the amount of detected light and with an improved resolution are provided. The optical sensor includes a first polarizing layer that splits incident light to light with a first polarization direction, a first photoreceiver that receives first polarized light split by the first polarizing layer, a second polarizing layer that splits the incident light to light with a second polarization direction, and a second photoreceiver that receives second polarized light split by the second polarizing layer. The first photoreceiver and the second photoreceiver are positioned alternatingly and spaced uniformly with each other.
Abstract:
A hoist main shaft torque monitoring device based on angle measurement, constituted primarily by a first base, a second base, a light generating unit, a shutter, and a light sensing element; the light source, a first lens, and a first optical aperture arranged in the light generating unit, as well as a second optical aperture, second lens, and light sensing element on the shutter, forming a light source generation, propagation, and reception pathway; when the elevator main shaft is subjected to a certain torque, a corresponding displacement is produced between the first optical aperture and the second optical aperture, thus measuring the change in amount of light ultimately reaching the second optical aperture so as to measure the twist angle of the rotary shaft and finally calculate the magnitude of the shaft torque. Without damaging the original equipment and foundation, the device measures the torque of the shaft at different rotational speeds. The device can measure stationary torque and torque at different rotational speeds of the shaft, without the electromagnetic field interfering with wireless transmission; the device is easy to use, maintenance costs are low, and it is of interest for widespread popularization.
Abstract:
A magnetic coupling for transferring rotational motion from a prime mover to a load includes reference marks calibrated to indicate torque applied to the coupling during operation. A light source providing intermittent light flashes permits a user to visibly discern the relative rotational position of the reference marks to one another, and thereby determine the torque applied to the coupling.
Abstract:
A torsion measurement device is disclosed. In one embodiment, the device includes a component having a marked surface and an optical sensor. The marked component and the optical sensor may be attached to a tube or other elongate member and positioned to enable the optical sensor to measure angular deflection of the tube from rotation of the marked component with respect to the optical sensor. The angular deflection may be combined with other data to determine applied torque and torsional stress on the tube or other elongate member. Additional systems, devices, and methods are also disclosed.
Abstract:
An optical scale, a method for manufacturing an optical scale, and an optical encoder less affected by fluctuations in the amount of detected light and with an improved resolution are provided. The optical scale includes a plurality of wires provided thereon so that the plurality of wires do not intersect each other and each of the tangential directions of the respective wires changes continuously. The optical encoder includes the optical scale, a light source, an optical sensor, and a computing unit. The optical sensor includes a first polarizing layer that splits incident light that is light source light from the light source passed through or reflected on the optical scale and being incident on the first polarizing layer to a first polarization direction, a second polarizing layer that splits the incident light to a second polarization direction, a first photoreceiver that receives first polarized light split by the first polarizing layer, and a second photoreceiver that receives second polarized light split by the second polarizing layer.