Abstract:
A system for measuring the density of a fluid in a vessel, the system including: at least one gamma-ray source positioned proximate to the vessel; at least one gamma-ray detector positioned proximate to the vessel, wherein the at least one gamma-ray detector is configured to detect gamma rays backscattered by the fluid from the at least one gamma-ray source; and a translator for converting the detected gamma-ray backscatter to a density value. A method to determine properties of a fluid in a vessel, the method including: positioning a gamma-ray source proximate to the vessel; positioning a gamma-ray detector proximate to the vessel; detecting gamma rays backscattered by the fluid from the gamma-ray source with the gamma-ray detector; determining a density of the fluid based upon an intensity of backscattered gamma rays received by the gamma-ray detector.
Abstract:
Sodium is determined, virtually without known interferences, based on neutron activation of liquid sample to produce radioactive .sup.23 Ne activation product from .sup.23 Na, sparging of the sample whereby a headspace gas mixture comprising .sup.23 Ne in an inert sparging gas is collected, and remote analysis of the headspace gas mixture to determine total parent sodium based on monitoring radiation emissions of .sup.23 Ne. As an illustration of utility, the analysis is demonstrated as applicable to determinations of sodium in aqueous or organic matrices at concentrations of 1 part per thousand and greater using preferred forms of .sup.241 Am/Be radioactive isotope as the activation source.
Abstract:
Fluid in a pipeline or container at a refinery or at any of various petroleum producing operations is bombarded with neutrons, and high energy gamma rays resulting from capture of thermal neutrons are detected. The spectra of the detected gamma rays are then analyzed to determine the concentration of the element chlorine, which gives an indication of the presence and concentration of salt water in the fluid. The concentration of sulfur and the percentage gas in the fluid may be determined simultaneously with the concentration of chlorine.
Abstract:
Fluid in a pipeline or container at a refinery or at any of various petroleum producing operations is bombarded with neutrons and high energy gamma rays resulting from capture of thermal neutrons are detected. The spectra of the detected gamma rays are then analyzed to determine the relative presence of the elements sulfur, hydrogen and chlorine. From the sulfur measurement, the oil cut of the fluid is determined, enabling the water cut to be determined. From the determined water cut, water salinity can also be determined.
Abstract:
A method of using a tracer additive in a wellbore that includes using a deployment device, the device configured with a hollowed region, and disposing a tracer additive into the hollowed region. The method includes sending the deployment device into the wellbore in manner whereby the deployment device arrives at a desired location, and sufficiently dissolving the deployment device so that the tracer additive comes into contact with a target formation fluid. The tracer additive has a first composition, and is in a solid powder form.
Abstract:
This application relates to apparatus and method for x-ray fluorescence analysis. There is provided an X-ray fluorescence analysis apparatus for analysing a sample, The X-ray fluorescence analysis apparatus comprises an X-ray source, a measurement chamber for holding the sample in air, and an X-ray detector. The X-ray source is arranged to irradiate the sample with a primary X-ray beam, to cause the sample to fluoresce. The X-ray detector is arranged to detect characteristic X-rays emitted by the sample and to determine a measured X-ray intensity associated with the characteristic X-rays. An X-ray filter, which transmits the primary X-ray beam, is arranged between the X-ray source and the sample. The X-ray source comprises an anode of material having an atomic number that is less than 25. The X-ray fluorescence analysis apparatus further comprises a sensor arrangement configured to sense air pressure and air temperature. A processor receives the measured X-ray intensity. The processor also receives air pressure data and air temperature data from the sensor arrangement. The processor is configured to carry out a compensation calculation for adjusting the measured X-ray intensity using the air pressure data and the air temperature data.
Abstract:
An article for screening includes a top surface and a bottom surface. A forward wall, an aft wall and side walls each extend between the top surface and the bottom surface. A longitudinal recess extends at least partially across the top surface has a first lateral wall extending away from the top surface toward the bottom surface and meeting with a base wall at a predetermined angle therebetween for positioning of a liquid material relative to the first lateral wall and the base wall. The predetermined angle is for restricting data in a data range provided by a scanning operation of the liquid material to data provided within the predetermined angle between the first lateral wall and the base wall of the recess. The liquid material may be contained within a container positioned within the recess. Preferably, the article is an insert for a security screening tray.
Abstract:
Disclosed herein is a method comprising: causing emission of characteristic X-rays of a first element attached to a first biological analyte; causing emission of characteristic X-rays of a second element attached to a second biological analyte; detecting a characteristic of the first biological analyte based on the characteristic X-rays of the first element and a characteristic of the second biological analyte based on the characteristic X-rays of the second element; wherein the first element and the second element are different; wherein the first biological analyte and the second biological analyte are in the same solution.
Abstract:
A method of using a tracer additive in a wellbore that includes using a deployment device, the device configured with a hollowed region, and disposing a tracer additive into the hollowed region. The method includes sending the deployment device into the wellbore in manner whereby the deployment device arrives at a desired location, and sufficiently dissolving the deployment device so that the tracer additive comes into contact with a target formation fluid. The tracer additive has a first composition, and is in a solid powder form.