Abstract:
A short pass filter is disclosed which exhibits high transmission in the infrared and/or visible region of the electromagnetic spectrum and which has high rejection in the microwave portion of the spectrum. The filter generally consists of a substrate of semiconducting material, for example, n-type germanium which has been doped with a suitable dopant or grown with impurities to provide a substrate with a known conductivity. A metal mesh is placed either on one or on both surfaces of the substrate, or is buried within the substrate. The combination of the semiconducting material and metal mesh produce a filter which will transmit infrared and/or visible radiation while rejecting microwave radiation through absorption and reflection.
Abstract:
A display arrangement comprising an optical biometric imaging device for imaging a biometric object comprising: an image sensor comprising a plurality of photodetector pixels; a lens arrangement comprising at least one lens configured to focus light reflected by a biometric object onto the image sensor; an aperture layer arranged between the object to be imaged and the image sensor, wherein the aperture layer comprises an aperture configured to limit the amount of light reaching the image sensor; and a filter element arranged in the aperture and configured to block light within a first wavelength range, wherein an area of the filter element is smaller than an area of the aperture so that a portion of light within the first wavelength range reaching the aperture layer pass through the aperture.
Abstract:
A display arrangement comprising an optical biometric imaging device for imaging a biometric object comprising: an image sensor comprising a plurality of photodetector pixels; a lens arrangement comprising at least one lens configured to focus light reflected by a biometric object onto the image sensor; an aperture layer arranged between the object to be imaged and the image sensor, wherein the aperture layer comprises an aperture configured to limit the amount of light reaching the image sensor; and a filter element arranged in the aperture and configured to block light within a first wavelength range, wherein an area of the filter element is smaller than an area of the aperture so that a portion of light within the first wavelength range reaching the aperture layer pass through the aperture.
Abstract:
A tunable notch filter for operation in reflection mode comprises an antenna layer positioned on a transmissive substrate and a mirror layer positioned on a support substrate. The antenna layer and the mirror layer are positioned on opposite sides of a gap and facing each other, the gap having a gap distance. The notch filter is tuned by adjusting the gap distance between the antenna layer and the mirror layer. Tuning the notch filter to a selected state can cause the filter to selectively attenuate the reflection of at least some electromagnetic radiation that is incident on the transmissive substrate and enters the notch filter.
Abstract:
An image sensor for recording incident radiation may include a first layer for filtering the incident radiation by attenuating incident radiation with a frequency below a cutoff frequency and a second light-sensitive layer for absorbing radiation passing through the first layer. The first layer may precede the second light-sensitive layer in a direction of propagation of the incident radiation and the first layer includes at least one aperture passing through the first layer to the second light-sensitive layer for propagating radiation therethrough. The cross sectional size of the at least one aperture may be configured to provide a cutoff frequency so that incident radiation with a frequency below the cutoff frequency is attenuated inside the at least one aperture and incident radiation with a frequency above the cutoff frequency propagates through the at least one aperture.
Abstract:
Systems and methods for hyperspectral and multispectral imaging are disclosed. A system includes a lens and an imaging device having a plurality of pixel sensors. A focus corrector is located within the optical path to refract at least a portion of the incoming light and change the focusing distance of specific wavelengths of light to converge at a focal plane. The focal corrector is selected based upon the imaging system to reduce an overall measure of deviation between a focal length curve for the lens and a focus position curve for pixel sensors to produce focused imaging data for a broad spectrum of light, including beyond the visible range.
Abstract:
The apparatus for selectively transmitting the spectrum of electromagnetic radiation within a predefined wavelength range is provided with a carrier (115), a pinhole diaphragm which is arranged above the carrier (115) and is made of a material that is substantially impermeable to the radiation of interest, wherein the pinhole diaphragm has at least one radiation passage opening with a size for allowing through radiation at a wavelength which is less than or equal to a predefinable upper limit wavelength, and an electrically insulating and optically transparent dielectric layer (103) which is formed on the carrier (115) inside the radiation passage opening and extends, in a manner adjoining the radiation passage opening, between the carrier (115) and at least one section below the pinhole diaphragm. The dielectric layer (103) has a thickness which is less than or equal to half a predefinable lower limit wavelength which is less than the upper limit wavelength.
Abstract:
Display devices and color filtering layers having an oriented nucleic acid layer are disclosed. The display device can include a light-orienting layer disposed between an oriented nucleic acid layer and a polarizing layer. In some embodiments, polarizing layer may include an oriented nucleic acid layer. The color filtering layer can include an oriented nucleic acid layer and two or more pigments. Methods of making the color filtering layer are also disclosed.
Abstract:
The invention relates to a plasmonic optical security component comprising two layers (2, 4) made of transparent dielectric material and a metal layer (3) arranged between said transparent dielectric material layers in order to form two dielectric-metal interfaces (31, 32). The metal layer is structured to form, on a first coupling region, a first periodic, two-dimensional coupling array (C1) which is capable of coupling surface plasmon modes, which are supported by said dielectric-metal interfaces, to an incident light ray, the first coupling array having a profile which does not have point symmetry in any of the directions thereof, and, on a second coupling region, a second periodic, two-dimensional coupling array (C2) which is capable of coupling surface plasmon modes, which are supported by said dielectric-metal interfaces, to an incident light ray, the second coupling array having a profile which does not have point symmetry in any of the directions thereof and is different from that of the first coupling array.
Abstract:
The present invention comprises a system for and method of frequency prefiltering comprising a camera shutter capable of continuously variable illumination during a single exposure of the sensor. The shutter comprises a continuously variable exposure effector which in disposed in an image path, either in front of a lens or between a lens and a sensor. The system for frequency prefiltering further comprises a synchronization cable that synchronizes a drive system with a sensor or with film. The shutter further comprises a postfilter. The postfilter comprises a digital finite impulse response convolutional filter.