Abstract:
Methods and systems for providing thermal insulation in an X-ray tube are provided. The method includes configuring a metallic foam to resist the heat flow in an X-ray tube. The method further comprises configuring the metallic foam for positioning in the X-ray tube to resist heat flow to bearings in the X-ray tube.
Abstract:
A bearing assembly for a rotating anode x-ray device. The bearing assembly includes a shaft having a flange at one end for attachment of the anode thereto. The shaft defines front and rear inner races and includes a plurality of extended surfaces. Front and rear outer race elements define front and rear outer races, respectively, corresponding to the front and rear inner races, respectively, defined by the shaft. The front and rear outer race elements cooperate with the shaft to confine front and rear ball sets which facilitate rotary motion of the shaft. A spacer including extended surfaces assists in the positioning of the front and rear outer race elements in a bearing housing. The extended surfaces of the shaft and spacer, in conjunction with emissive coatings provided on various portions of selected components of the bearing assembly, facilitate a relative improvement in heat transfer out of the bearing assembly.
Abstract:
A rotary anode X-ray tube, comprising a rotor, a stationary structure, a dynamic pressure slide bearing formed between the rotor and the stationary structure, the stationary structure having a lubricant storage chamber and provided with a lubricant passageway, and a vacuum vessel. Holes are formed in the stationary structure extending from the lower edge surface along the tube axis and not to cross the lubricant storage chamber and the lubricant passageway. Heat transfer members for the stationary structure having a heat conductivity higher than that of the stationary structure are inserted into the holes, respectively. A heat transfer member having a heat conductivity higher than that of the inner cylindrical structure of the rotor is bonded in a cylindrical form to the outer circumferential wall of the inner cylindrical structure constituting a bearing. A heat transfer member can be mounted to each of the rotor and the stationary structure.
Abstract:
A high energy x-ray tube includes an evacuated chamber (12) containing a rotor (34) which rotates an anode (10) in the path of a stream of electrons (A) to generate an x-ray beam (B) and heat. Heat is carried away from the anode to a bearing shaft (54) which rotates relative to a stationary rotor (42) on forward and rear lubricated bearings (44P, 44R). The heat is directed away from the forward bearings (44F), by a core (70) of a thermally conductive material, such as copper, disposed in a central cavity (60) within the shaft. Annular insulating regions (74,76) are optionally defined between the core and the bearing shaft adjacent the races to increase the thermal path between the anode and the races. The reduction in temperature of the forward bearings results in a decrease in the evaporation rate of the lubricant (46) and a corresponding increase in the lifetime of the x-ray tube.
Abstract:
Provided is a CT system having a cooling system. The CT system may include a gantry unit including: a rotor; and an assembly component; an intake provided on a first surface of the rotor; and an outtake provided on a second surface opposite to the first surface of the rotor, wherein the gantry unit is cooled by air moving through the intake and the outtake due to a rotation force or a centrifugal force generated by a rotation movement of the rotor.
Abstract:
A structure and associated method for forming a liquid metal or spiral groove bearing assembly for an x-ray tube is illustrated that utilizes a unitary sleeve and a thrust ring or seal each formed of a weldable, non-refractory material. The sleeve and the thrust seal are welded to one another to provide an improved construction for minimizing leaks of the liquid metal bearing fluid. The structure of the sleeve and the thrust seal are formed with deformation restricting features that maintain the integrity of the bearing surfaces of the assembly when the thrust seal is secured within the sleeve and welded thereto to form the bearing assembly.
Abstract:
An x-ray tube includes a frame forming a first portion of a vacuum enclosure, a rotating subsystem shaft positioned within the vacuum enclosure and having a first end and a second end, wherein the first end of the rotating subsystem shaft is attached to a first portion of the frame, a target positioned within the vacuum enclosure and attached to the rotating subsystem shaft between the first end and the second end, the target positioned to receive electrons from an electron source positioned within the vacuum enclosure, and a thermal compensator mechanically coupled to the second end of the rotating subsystem shaft and to a second portion of the frame, the thermal compensator forming a second portion of the vacuum enclosure.
Abstract:
The present invention relates to a bearing system (1) for a rotary anode (24) of an X-ray tube (23). The bearing system comprises a shaft (2) for supporting the rotary anode (24), the shaft being surrounded by two swash rings (7). Further, a gimbal ring (4) surrounding the shaft (2) and being arranged in between the two swash rings (7) is provided. This gimbal ring (4) is hingeably connected with the shaft (2) such that the gimbal ring (4) is tillable relative to a longitudinal axis of the shaft (2). Further, the invention relates to an X-ray tube (19) and an imaging system (15) having such a bearing system (1).
Abstract:
A rotating union for an X-ray target is provided. The rotating union for the X-ray target comprises a housing, a coolant-slinging device comprising a rotating shaft having an inner diameter and an outer diameter, a proximal end and a distal end, and a bore therein, one or more slingers coupled to a proximal end of the rotating shaft; a drain annulus coupled to the one or more slingers, wherein the one or more slingers are configured to direct a coolant to the drain annulus and the drain annulus is configured to direct the coolant through a primary coolant outlet; and a stationary tube having a first end and a second end, wherein at least a portion of the stationary tube is disposed within the bore of the rotating shaft.
Abstract:
A target for generating x-rays includes a target substrate, a target shaft attached to the target substrate, and a radiation emissive coating applied to at least one of the target substrate and the target shaft, wherein a center-of-gravity of the target is positioned between a front bearing assembly and a rear bearing assembly of an x-ray tube.