Abstract:
Provided is a method for driving an X-ray source, which includes a cathode electrode, an electron source provided on the cathode electrode and configured to emit an electron beam, and an anode target including an electron beam irradiation surface with the electron beam irradiated thereto, the method including providing the electron beam in a plurality of main pulses, wherein each of the main pulses includes a plurality of short pulses having an idle time and a pulse time, and each of the idle time and the pulse time is shorter than a duration time of the main pulse, wherein applying the plurality of short pulses comprises irradiating the electron beam from the electron source towards the electron beam irradiation surface during the pulse time; and idling the electron beam during the idle time, wherein a duty cycle of the short pulse is 0.4 to 0.6, which is obtained by dividing the idle time by a sum of the pulse time and the idle time.
Abstract:
An evacuable outer housing having at least one X-ray-permeable beam exit window, an electron source, an anode and a collector for catching electrons which penetrate the anode are included as an X-ray source. The collector is part of an electrical current circuit for applying a negative potential to the anode, and the radiation window is disposed such that X-ray radiation which exits from the anode at an angle of 130 degrees to 230 degrees to the electron beam direction can be coupled out through the radiation window. An imaging system includes such an X-ray, an arrangement to accommodate an object to be examined, and an X-ray detector.
Abstract:
The embodiments relate to a CT system with a stationary part and a rotatable part, which is supported rotatably in the stationary part. At least one x-ray tube unit cooled by a cooling fluid, an x-ray detector lying opposite the x-ray tube unit, and a cooling device coupled in terms of fluid technology to the x-ray tube unit via a coolant circuit are disposed in the rotatable part. A cooling air channel, through which cooling air is able to be fed into the rotatable part, and an exhaust air channel, through which heated exhaust air is able to be taken away from the rotatable part, are disposed in the stationary part. In accordance with the embodiments, at least one overpressure relief valve is disposed in the coolant circuit, through which the cooling fluid is able to be conveyed away in the exhaust air channel.
Abstract:
According to an exemplary embodiment an x-ray tube comprises a cathode, rotable disc anode, and a focal spot modulating unit, wherein the cathode is adapted to emit an electron beam, and wherein the focal spot modulating unit is adapted to modulate the electron beam in such a way that an intensity distribution of the electron beam on a focal spot on the anode is asymmetric such that the intensity of the electron beam on the focal spot is higher at the front of the focal spot with respect to the rotation direction.
Abstract:
According to an exemplary embodiment an x-ray tube comprises a cathode, rotable disc anode, and a focal spot modulating unit, wherein the cathode is adapted to emit an electron beam, and wherein the focal spot modulating unit is adapted to modulate the electron beam in such a way that an intensity distribution of the electron beam on a focal spot on the anode is asymmetric such that the intensity of the electron beam on the focal spot is higher at the front of the focal spot with respect to the rotation direction.
Abstract:
A mechanism for cooling the anode of an x-ray tube using a phase change material to transfer heat away from the anode. The x-ray tube is joined to a sealed heat exchange chamber which contains a liquid metal as a liquid to vapor phase change material (L-V PCM). The back side of the anode is exposed to an interior of the heat exchange chamber, and a jet sprayer inside the heat exchange chamber sprays a liquid of the metal onto the back side of the heated anode. The L-C PCM evaporates on that surface to carry away the heat, and the vapor then condenses back into the liquid on the cool surfaces of the heat exchange chamber. The surfaces of the heat exchange chamber may be cooled by convection cooling. Optionally, pipes containing a circulating cooling fluid may be provide inside the heat exchange chamber.
Abstract:
An X-ray tube 10 with an anode 30 comprising at least a rod shaped body with a front wall having target area 32 as target for an electron beam 27 on its frontal side provides a high intensity of X-ray radiation if the anode 30 has at least one cavity extending to the front wall, the cavity having a coating 50 of at least one inorganic salt.
Abstract:
An x-ray tube target and method of repairing a damaged x-ray tube target. The x-ray tube target includes an original substrate and a portion of the original substrate that includes a new portion of a substrate and a new target track that is attached to a void in the original substrate. The method includes removal and replacement of damaged materials on used anode targets of x-ray tubes, thereby enabling recovery of used anode targets without the use of expensive and time consuming layer deposition methods. The method also avoids the high costs and long development cycles associated with known repair and refabrication methods for anode targets of x-ray tubes.
Abstract:
A mechanism for cooling the anode of an x-ray tube using a phase change material to transfer heat away from the anode. The x-ray tube is joined to a sealed heat exchange chamber which contains a liquid metal as a liquid to vapor phase change material (L-V PCM). The back side of the anode is exposed to an interior of the heat exchange chamber, and a jet sprayer inside the heat exchange chamber sprays a liquid of the metal onto the back side of the heated anode. The L-C PCM evaporates on that surface to carry away the heat, and the vapor then condenses back into the liquid on the cool surfaces of the heat exchange chamber. The surfaces of the heat exchange chamber may be cooled by convection cooling. Optionally, pipes containing a circulating cooling fluid may be provide inside the heat exchange chamber.
Abstract:
The embodiments relate to a CT system with a stationary part and a rotatable part, which is supported rotatably in the stationary part. At least one x-ray tube unit cooled by a cooling fluid, an x-ray detector lying opposite the x-ray tube unit, and a cooling device coupled in terms of fluid technology to the x-ray tube unit via a coolant circuit are disposed in the rotatable part. A cooling air channel, through which cooling air is able to be fed into the rotatable part, and an exhaust air channel, through which heated exhaust air is able to be taken away from the rotatable part, are disposed in the stationary part. In accordance with the embodiments, at least one overpressure relief valve is disposed in the coolant circuit, through which the cooling fluid is able to be conveyed away in the exhaust air channel.