摘要:
An implementation of a technology is described herein for deriving robust non-local characteristics and quantizing such characteristics for blind watermarking of a digital good. This technology finds the proper balance between minimizing the probability of false alarms (i.e., detecting a non-existent watermark) and the probability of misses (i.e., failing to detect an existing watermark). The technology, described herein, performs quantization index modulation (QIM) based upon non-local characteristics of the digital good. Non-local characteristics may include statistics (e.g., averages, median) of a group of individual parts (e.g., pixels) of a digital good. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
An implementation of a technology is described herein for deriving robust non-local characteristics and quantizing such characteristics for blind watermarking of a digital good.
摘要:
An implementation of a technology is described herein for deriving robust non-local characteristics and quantizing such characteristics for blind watermarking of a digital good. This technology finds the proper balance between minimizing the probability of false alarms (i.e., detecting a non-existent watermark) and the probability of misses (i.e., failing to detect an existing watermark). The technology, described herein, performs quantization index modulation (QIM) based upon non-local characteristics of the digital good. Non-local characteristics may include statistics (e.g., averages, median) of a group of individual parts (e.g., pixels) of a digital good. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
Embedding a watermark in an image by changing selected DCT coefficients in the blocks and macro blocks of coefficients which represent the image. The changes in the blocks that comprise each macro block are done in a coordinated manner so that the phase of the watermark signal is preserved across the block boundaries. By preserving the phase across block boundaries, a detectable grid is formed which can be used as an orientation and scaling grid. Furthermore, by preserving the phase across block boundaries the visual artifacts introduced by the watermark are minimized. The bit rate of the image signal is preserved by maintaining a count (referred to as the cumulative change count) that represents the amount that the bit rate has been increased by changes in coefficients less the amount that the bit rate has been decreased by changes in the coefficients. If at any time the cumulative change count exceeds a pre-established limit, coefficient changes that decrease the cumulative change count continue; however, coefficient changes that increase the cumulative change count are suspended. The suspension of coefficient changes that increase the cumulative change count continues until the cumulative change count falls below the pre-established limit.
摘要:
A novel technique for high-bandwidth steganographic embedding of supplemental data in a series of digital signals or measurements, such as taken from analog data streams or subsampled and/or transformed digital data, wherein the series of measurements are derived through functional transformations and involving quantization and/or aliasing, with the supplemental data bits modulating or modifying the quantized and/or aliased components with only slight adjustments thereof to embed the supplemental data without substantially affecting the quality of the measurements; and all, preferably, through not exclusively, with the use of least-significant-bit parity encoding designed to choose the appropriate components to be so modulated or modified
摘要:
Forensic communication apparatus and method. An apparatus is disclosed for recording image or other data in real time. The apparatus includes a capture device for capturing the image or other information. Once captured, a local verification device is operable to indelibly mark the captured image or other information with the date, time, location and information identifying the creator of the data. A transmitter is provided for transmitting the locally verified captured image or other information in real time to a secure storage facility. The capture device is operable, after the locally verified captured image or other information is transmitted to the secure storage facility, to receive and verify acknowledgment of the receipt of the transmitted locally verified captured image or other information to the storage facility.
摘要:
What has been disclosed is a method for authentication of JPEG image data prior to transmission to an intended recipient which enables the recipient to ascertain whether the received image file originated from a known identified source or whether the contents of the file have been altered in some fashion prior to receipt. In accordance to the present invention, to encode verification information a unique hashing function is derived from a first section of image data contained in the JPEG compressed image in such a way that any changes subsequently made to said first section of image data would be reflected in a different hashing function being derived therefrom. An integrity checking number is produced from the first section's derived hashing function. The integrity checking number is subsequently encrypted into a signature string. The signature string is then embedded into a next section of the image data. The process is repeated until all sections of image data have been processed. The signature string corresponding to the very last section of data is self-embedded therein. As the embedding of a previous section's integrity checking number is done without modifying the JPEG bit stream any JPEG decoder found in the arts can thereafter properly decode the image. The image file is then transmitted to an intended recipient. To decode the embedded verification information upon receipt of the JPEG image file by the recipient a hashing function is computed by the recipient from a first section of image data contained in the received image file. A second section of data is identified wherein the signature string for the first section of data had been embedded. The signature is then decoded from the data. The signature string is thereafter decrypted to yield the hashing function (integrity checking) number contained therein. The two numbers are then compared against each other. If the first checking number matches the number contained in retrieved signature string which had been previously embedded therein by the author then it can be ascertained that the image data for that first section is authentic. The process is repeated for each successive section of data until all the data sections of the image file have been processed.
摘要:
Digital watermarks are embedded in image data (102)in order to enable authentication of the image data and/or replacement of rejected portions of the image data. Authentication codes are derived by comparing selected discrete cosine transform (DCT) (104) coefficients within DCT data (106) derived from the original, spatial-domain image data. The authentication codes thus generated are embedded in DCT coefficients (612) other than the ones which were used to derive the authentication codes. The resulting, watermarked data can be sent or made available to one or more recipients who can compress or otherwise use the watermarked data. Image data derived from the watermarked datanulle.g, compressed versions of the watermarked datanullcan be authenticated by: extracting the embedded authentication codes, comparing DCT coefficients derived from the coefficients from which the original authentication codes were generated; and determining whether the compared DCT coefficients are consistent with the extracted authentication codes.
摘要:
A method and arrangement are disclosed for processing a compressed media signal, for example, embedding a watermark in an MPEG2 video signal. The watermark, a spatial noise pattern (140), is embedded (123) by selectively discarding the smallest quantized DCT coefficients. The discarded coefficients are subsequently merged in the runs of other run/level pairs. To compensate for a too large reduction of the bit rate, some of the new run/level pairs are not variable-length encoded (124) but represented by longer code words according to further coding rule (125) providing such longer code words, for example, MPEG's nullEscape codingnull.
摘要:
In order to decode a received digital signal which has been watermarked with a known watermark, at least part of the digital signal is decoded by using a parametrisable iterative decoder, the watermark is extracted from the decoded signal, the extracted watermark is compared with the known watermark, and at least one parameter of the decoder is modified if necessary, according to the result of the comparison.