Abstract:
A discharge lamp comprising an arc tube containing a pair of electrodes in a light-emitting portion and an outer tube that envelops the light-emitting portion and is at least partly fused to the arc tube, wherein the outer tube comprises silicon dioxide in the range from 90 to 99.88 wt. % and boron in the range from 0.12 wt. % or more. The discharge lamp can inhibit the arc tube from deforming when the outer tube and arc tube are fused to each other by adjusting a softening temperature of the outer tube to an appropriate temperature and can realize a high accuracy of luminous intensity distribution.
Abstract:
In a gas discharge tube in accordance with the present invention, one or both of the inner wall face and outer wall face of a side tube body are provided with a coating made of a glass material or ceramics. As a result, the side tube body can be made of various materials regardless of properties of the gas filling the inside, whereby the gas discharge tube can have a wider range of processed forms and smaller dimensions at the same time, and its mass production can freely be carried out.
Abstract:
A field-emission type cold cathode is disclosed, by which the degradation of the withstand voltage between the gate electrode and emitter and discharge destruction are suppressed, and the operating voltage and the distance between the gate electrode and emitter can be reduced. The cold cathode comprises a substrate (on a surface of which an emitter is formed) for functioning as a leading emitter electrode; and a gate electrode, formed via an insulating film on the substrate, having an aperture which surrounds the emitter via a space. The height of a boundary (which faces the space) between the insulating film and the substrate is lower than the height of the surface of the substrate on which the emitter is formed. An insulated trench surrounds the area on which the emitter is formed, where the above boundary is placed between the emitter and the trench, and a part of the insulating film is present between the boundary and the trench.
Abstract:
A method of fabricating field emission arrays which employs a single mask to define emitter tips and their corresponding resistors. Column lines may also be defined without requiring the use of an additional mask. The method includes disposing substantially mutually parallel conductive lines onto a substrate of the field emission array. The conductive lines may be patterned from a layer of conductive material or selectively deposited onto the substrate. One or more material layers, from which the emitter tips and resistors will be defined, are disposed onto the conductive lines and the regions of substrate exposed between adjacent conductive lines. The exposed surface of the layer or layers of emitter tip and resistor material or materials may be planarized. A mask is disposed over the substantially planar surface. The emitter tips and resistors are defined through the mask and substantially longitudinal center portions of the conductive lines exposed through the layer or layers of emitter tip and resistor material or materials. The substantially longitudinal center portions of the conductive lines may be removed in order to define column lines and to electrically isolate adjacent column lines from one another. A field emission array that has been fabricated in accordance with the method of the present invention is also within the scope of the present invention. Such a field emission array may include a substrate including resistors protruding therefrom, column lines laterally adjacent the resistors, and one or more emitter tips disposed substantially above each of the resistors.
Abstract:
A field emission electron source comprising an electrically conductive substrate, an oxidized or nitrided porous polysilicon layer formed on the surface of said electrically conductive substrate on one side thereof and having nano-structures and a thin metal film formed on said oxidized or nitrided porous polysilicon layer. Voltage is applied to said thin metal film used as a positive electrode with respect to said electrically conductive substrate thereby to emit electron beam through said thin metal film.
Abstract:
An electron-emitting device contains a lower conductive region (22), a porous insulating layer (24A, 24B, 24D, 24E, or 24F) overlying the lower conductive region, and a multiplicity of electron-emissive elements (30, 30A, or 30B) situated in pores (281) extending through the porous layer. The pores are situated at locations substantially random relative to one another. The lower conductive region typically contains a highly conductive portion (22A) and an overlying highly resistive portion (22B). Alternatively or additionally, a patterned gate layer (34B, 40B, or 46B) overlies the porous layer. Openings (36, 42, or 541) corresponding to the filaments extend through the gate layer at locations generally centered on the filaments such that the filaments are separated from the gate layer.
Abstract:
An amorphous diamond material that is capable of emitting electrons in a vacuum upon the input of a sufficient amount of energy is disclosed. The material may utilize both compositional and geometrical aspects in order to maximize electron output and minimize required energy input. In one aspect, the amorphous diamond material may include at least about 90% carbon atoms with at least about 30% of such carbon atoms bonded in distorted tetrahedral coordination. Further, the material may be configured with an emission surface having an asperity height of from about 10 to about 10,000 nanometers. A variety of energy types may be used separately or in combination to facilitate electron flow, such as thermal energy, light energy, and induced electric field energy. The amorphous diamond material may be incorporated into a variety of vacuum-type devices, such as switches, laser diodes, electrical generators, and cooling devices.
Abstract:
A probe stabilized arc discharge lamp including a base portion, a window spaced from the base portion, a side wall interconnecting the base portion with the window. The side wall, the base portion, and the window define a chamber. A first electrode is disposed vertically in the chamber and extends outwardly through the base portion. A second electrode is also disposed vertically in the chamber and is spaced from the first electrode. The second electrode extends outwardly through the base portion. The first and second electrodes define an arc gap. There is also at least one trigger probe extending to or proximate to the arc gap for triggering an arc in the arc gap. Also, a reflector is disposed about the arc gap for directing radiation generated by the arc out the window. A sparker may also be provided.
Abstract:
A high emission electron emitter includes an electron injection layer, an active layer of high porosity porous silicon material in contact with the electron injection layer, a contact layer of low porosity porous silicon material in contact with the active layer and including an interface surface with a heavily doped region, and an optional top electrode in contact with the contact layer. The contact layer reduces contact resistance between the active layer and the top electrode and the heavily doped region reduces resistivity of the contact layer thereby increasing electron emission efficiency and stable electron emission from the top electrode. The electron injection layer is made from an electrically conductive material such as n+ semiconductor, n+ single crystal silicon, a metal, a silicide, or a nitride. The active layer and the contact layer are formed in a layer of silicon material that is deposited on the electron injection layer and then electrochemically anodized in a hydrofluoric acid solution. Prior to the anodization, the interface surface can be doped to form the heavily doped region. The layer of silicon material can be porous epitaxial silicon, porous polysilicon, porous amorphous silicon, and porous silicon carbide.
Abstract:
A high resolution field emission display includes a faceplate and a baseplate. The faceplate includes a transparent viewing layer, a transparent conductive layer formed on the transparent viewing layer and intersecting stripes of light-absorbing, opaque insulating material formed on the transparent conductive layer. The insulating material defines openings less than one hundred microns wide between the intersecting stripes. The faceplate also includes a plurality of localized regions of cathodoluminescent material, each formed in one of the openings. The cathodoluminescent material includes a metal oxide providing reduced resistivity in the cathodoluminescent material. Significantly, the reduced resistivity of the cathodoluminescent material together with the focusing effect of the insulating material provide increased acuity in luminous images formed on the faceplate. The baseplate includes a substrate, an emitter formed on the substrate and a dielectric layer formed on the substrate and having an opening formed about the emitter. The baseplate also includes a conductive extraction grid formed on the dielectric layer and having an opening formed about the emitter.