Abstract:
A field emission pixel includes a cathode on which a field emitter emitting electrons is formed, an anode on which a phosphor absorbing electrons from the field emitter is formed, and a thin film transistor (TFT) having a source connected to a current source in response to a scan signal, a gate receiving a data signal, and a drain connected to the field emitter. The field emitter is made of carbon material such as diamond, diamond like carbon, carbon nanotube or carbon nanofiber. The cathode may include multiple field emitters, and the TFT may include multiple transistors having gates to which the same signal is applied, sources to which the same signal is applied, and drains respectively connected to the field emitters. An active layer of the TFT is made of a semiconductor film such as amorphous silicon, micro-crystalline silicon, polycrystalline silicon, wide-band gap material like ZnO, or an organic semiconductor.
Abstract:
Provided is a field emission display (FED) in which field emission devices are applied to a flat panel display. The FED includes: a cathode plate including a substrate, first and second thin film transistors (TFTs) that are serially connected on the substrate, a field emitter disposed on a drain electrode of the second TFT, a gate insulating layer having a gate hole surrounding the field emitter, and field emission gate electrodes disposed on the gate insulating layer; and an anode plate including a substrate, and red, green, and blue phosphors disposed on the substrate, wherein the cathode plate and the anode plate are vacuum-packaged parallel and opposite to each other. According to the present invention, uniformity of the FED panel can be significantly improved, and an inherent source-drain leakage current of the TFT can be significantly reduced, so that a contrast ratio of the FED can be significantly enhanced.
Abstract:
A method for manufacturing a triode type cathode structure including depositing and etching: a cathode layer as cathode conductors; a grid layer as grid conductors; an electrical insulation layer and the grid conductors until reaching a resistive layer to provide cavities; and the cathode conductors to have a perforated structure at the intersection of the cathode conductors and grid conductors. Etching the grid conductors and the electrical insulation layer includes: a) depositing a resin layer on the grid layer, b) lithography and development of the resin layer according to a pattern that will form emissive pads, c) etching the grid layer according to the pattern, d) etching the insulation layer subjacent to the grid layer by extending the etching beyond emissive pad patterns, e) etching the grid layer at zones exposed by etching the insulation layer until reaching the resin layer, f) depositing a catalyst layer in openings of the resin layer to form emissive pads at the bottom of the cavities, and g) eliminating the resin layer.
Abstract:
The invention includes field emitters, field emission displays (FEDs), monitors, computer systems and methods employing the same for providing uniform electron beams from cathodes of FED devices. The apparatuses each include electron beam uniformity circuitry. The electron beam uniformity circuit provides a grid voltage, VGrid, with a DC offset voltage sufficient to induce field emission from a cathode and a periodic signal superimposed on the DC offset voltage for varying the grid voltage at a frequency fast enough to be undetectable by the human eye. The cathodes may be of the micro-tipped or flat variety. The periodic signal may be sinusoidal with peak-to-peak voltage of between about 5 volts and about 50 volts.
Abstract:
A thin film transistor structure for a field emission display is disclosed, which has a substrate; a patterned poly-silicon layer having a source area, a drain area, and a channel on the substrate; a patterned first gate metal layer; a first gate-insulating layer sandwiched in between the poly-silicon layer and the first gate metal layer; a patterned second gate metal layer; and a second gate-insulating layer sandwiched in between the poly-silicon layer and the second gate metal layer; wherein the thickness of the second insulating layer is greater than that of the first gate-insulating layer, and the absolute voltage in the channel under the first gate metal layer is less than that under the second gate metal layer when a voltage higher than the threshold voltage thereof is applied to both of the first gate metal layer and the second gate metal layer.
Abstract:
A cathode panel for a cold cathode field emission display, comprising; (a) a plurality of main wirings, (b) a plurality of branch wirings extending from each main wiring, and (c) cold cathode electron emitting portions connected to the branch wirings, wherein a branch wiring connecting a cold cathode electron emitting portion defective in operation and a main wiring is cut off.
Abstract:
An image formation apparatus is disclosed which includes, within an enclosure configured by a pair of substrates placed face to face and an external frame placed between the substrates, an electron source placed on one of the pair of substrates, an image formation material placed on the other substrate, and spacers placed between the substrates, characterized in that the spacers and the external frame is conductive and device is provided for electrically connecting the spacers and the external frame so that the equipotential surfaces between the spacers and the external frame are quasi-parallel when driven.
Abstract:
A field emission display device (1) includes a cathode plate (20), a resistive buffer (30) in contact with the cathode plate, a plurality of electron emitters (40) formed on the buffer, and an anode plate (50) spaced from the electron emitters. Each electron emitter includes a rod-shaped first part (401) and a conical second part (402). The buffer and first parts are made from silicon nitride. The combined buffer and first parts has a gradient distribution of electrical resistivity such that highest electrical resistivity is nearest the cathode plate and lowest electrical resistivity is nearest the anode plate. The second parts are made from niobium. When emitting voltage is applied between the cathode and anode plates, electrons emitted from the electron emitters traverse an interspace region and are received by the anode plate. Because of the gradient distribution of electrical resistivity, only a very low emitting voltage is needed.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.