Ion implanting method and apparatus

    公开(公告)号:US06750462B2

    公开(公告)日:2004-06-15

    申请号:US10280057

    申请日:2002-10-25

    CPC classification number: H01J37/3171 H01J2237/20228

    Abstract: The ion implanting method uses both reciprocatively scanning an ion beam in an X direction and reciprocatively mechanically driving a substrate in a Y direction orthogonal thereto. An implanting step of implanting ions separately for two implanted regions with different dose amounts of the substrate is executed plural times by changing at the center of the substrate a driving speed of the substrate. A rotating step of rotating the substrate around its center by a prescribed angle is executed once during each of the intervals between the respective implanting steps and while the ion beam is not applied to the substrate.

    Method and apparatus for emission lithography using patterned emitter
    32.
    发明授权
    Method and apparatus for emission lithography using patterned emitter 失效
    使用图案化发射器的发射光刻的方法和装置

    公开(公告)号:US06740895B2

    公开(公告)日:2004-05-25

    申请号:US09865607

    申请日:2001-05-29

    Applicant: In-Kyeong Yoo

    Inventor: In-Kyeong Yoo

    CPC classification number: B82Y10/00 B82Y40/00 H01J37/3175 H01J2237/31777

    Abstract: A method and apparatus for emission lithography using a patterned emitter wherein, in the apparatus for emission lithography, a pyroelectric emitter or a ferroelectric emitter is patterned using a mask and it is then heated. Upon heating, electrons are not emitted from that part of the emitter covered by the mask, but are emitted from the exposed part of the emitter not covered by the mask so that the shape of the emitter pattern is projected onto the substrate. To prevent dispersion of emitted electron beams, which are desired to be parallel, the electron beams are controlled using a magnet, a direct current magnetic field generator or a deflection system, thereby achieving an exact one-to-one projection or an exact x-to-one projection of the desired pattern etched on the substrate.

    Abstract translation: 使用图案化发射器的发射光刻的方法和装置,其中在用于发射光刻的装置中,使用掩模对热电发射体或铁电发射体进行图案化,然后将其加热。 在加热时,电子不会从掩模覆盖的发射体的那部分发射,而是从未被掩模覆盖的发射体的暴露部分发射,使得发射极图案的形状投影到基板上。 为了防止所期望的平行的发射电子束的分散,使用磁体,直流磁场发生器或偏转系统来控制电子束,从而实现精确的一对一投影或精确的x- 在基板上刻蚀所需图案的一对一投影。

    System and method for uniformly implanting a wafer with an ion beam
    34.
    发明授权
    System and method for uniformly implanting a wafer with an ion beam 有权
    用离子束均匀注入晶片的系统和方法

    公开(公告)号:US06677599B2

    公开(公告)日:2004-01-13

    申请号:US09768409

    申请日:2001-01-24

    CPC classification number: H01J37/3171 H01J2237/20228 H01J2237/31703

    Abstract: A method is provided for uniformly implanting a wafer with an ion beam. The wafer is generally of the type with a surface area in the form of a disk with a diameter and center. The ion beam is first formed as an elongated shape incident on the wafer, the shape having a length along a first axis smaller than the diameter, and a width shorter than the length along a second axis. Next, the wafer is translated at a variable translational velocity in a direction substantially parallel with the second axis. The wafer is also rotated substantially about the center at a rotational velocity. These movements are made such that the ion beam implants the wafer with substantially uniform dose across the surface area of the wafer. The wafer is preferably translated such that the ion beam implants the wafer from one side of the wafer, across the surface area of the wafer, and through another side of the wafer, in a selected velocity versus position profile. The wafer is also tilted while rotating such that the ion beam implants the surface area at a substantially constant angle relative to a crystal axis of the wafer. The wafer can also be translated in a direction substantially parallel to the ion beam such that the ion beam implants the surface area with a substantially constant spot size. The methods of the invention also include determining beam current density of the ion beam, and adjusting the variable translational velocity, and rotational velocity, as a function of the current density.

    Abstract translation: 提供了用离子束均匀地注入晶片的方法。 晶片通常是具有直径和中心的盘形式的表面积的类型。 离子束首先形成为入射在晶片上的细长形状,该形状具有沿第一轴线小于直径的长度,并且其宽度比沿第二轴线的长度短。 接下来,以与第二轴基本平行的方向以可变的平移速度平移晶片。 晶片也以旋转速度基本上围绕中心旋转。 这些运动被制成使得离子束在晶片的表面区域上以基本均匀的剂量注入晶片。 优选地将晶片平移,使得离子束以晶片的一侧,跨过晶片的表面区域,并以所选择的速度与位置分布,通过晶片的另一侧,从晶片的一侧注入晶片。 晶片也在旋转时倾斜,使得离子束相对于晶片的晶轴以基本恒定的角度注入表面积。 晶片也可以在基本上平行于离子束的方向上平移,使得离子束以基本恒定的光斑尺寸注入表面积。 本发明的方法还包括确定离子束的束电流密度,以及根据电流密度调整可变平移速度和旋转速度。

    System for inspecting microscopic samples with a scanning microscope
    35.
    发明授权
    System for inspecting microscopic samples with a scanning microscope 失效
    用扫描显微镜检查微观样品的系统

    公开(公告)号:US06657187B2

    公开(公告)日:2003-12-02

    申请号:US09817583

    申请日:2001-03-26

    CPC classification number: G02B21/002

    Abstract: The inventive system comprises a scanning microscope with at least one monitor, a computer and inputting means. Furthermore, at least one laser and control electronics are provided. All of these elements can be arranged on a table top. The laser and the control electronics are stored in a electromagnetically shielded housing wherein the housing can be completely stored under the table top. The housing comprises an U-shaped control panel which embraces a part of the table top when the housing is stored completely under the table top.

    Abstract translation: 本发明的系统包括具有至少一个监视器,计算机和输入装置的扫描显微镜。 此外,提供至少一个激光和控制电子装置。 所有这些元素都可以安排在桌面上。 激光器和控制电子器件存储在电磁屏蔽的壳体中,其中壳体可以完全储存在台面下方。 壳体包括U形控制面板,当壳体完全储存在台面下方时,其包围台面的一部分。

    Apparatus for pyroelectric emission lithography using patterned emitter
    37.
    发明授权
    Apparatus for pyroelectric emission lithography using patterned emitter 失效
    使用图案发射器的热释光光刻设备

    公开(公告)号:US06476402B1

    公开(公告)日:2002-11-05

    申请号:US09619526

    申请日:2000-07-19

    Applicant: In-Kyeong Yoo

    Inventor: In-Kyeong Yoo

    CPC classification number: B82Y10/00 B82Y40/00 H01J37/3175 H01J2237/31777

    Abstract: A method and an apparatus for pyroelectric lithography using a patterned emitter is provided. In the apparatus for pyroelectric lithography, a pyroelectric emitter or a ferroelectric emitter is patterned using a mask and it is then heated. Upon heating, electrons are not emitted from that part of the emitter covered by the mask, but are emitted from the exposed part of the emitter not covered by the mask so that the shape of the emitter pattern is projected onto the substrate. To prevent dispersion of emitted electron beams, which are desired to be parallel, the electron beams are controlled using a magnet or a projection system, thereby achieving exact a one-to-one projection or a x-to-one projection of the desired pattern etched on the substrate.

    Abstract translation: 提供了一种使用图案化发射器进行热电光刻的方法和装置。 在用于热电光刻的装置中,使用掩模对热电发射体或铁电发射体进行图案化,然后将其加热。 在加热时,电子不会从掩模覆盖的发射体的那部分发射,而是从未被掩模覆盖的发射体的暴露部分发射,使得发射极图案的形状投影到基板上。 为了防止希望平行的发射电子束的分散,使用磁体或投影系统控制电子束,从而精确地实现所需图案的一对一投影或一对一投影 蚀刻在基板上。

    Scanning force microscope to determine interaction forces with high-frequency cantilever
    38.
    发明授权
    Scanning force microscope to determine interaction forces with high-frequency cantilever 有权
    扫描力显微镜确定与高频悬臂相互作用力

    公开(公告)号:US06452170B1

    公开(公告)日:2002-09-17

    申请号:US09545570

    申请日:2000-04-07

    CPC classification number: G01Q30/04 H01J37/302 H01J2237/2818 Y10S977/852

    Abstract: An apparatus and method for determining a force of interaction between a sample and a tip on a cantilever. The method uses a non-Hookian equation to model the cantilever as it is deflected by the force of interaction between the sample and the cantilever tip. The sample is positioned at a predetermined distance from the cantilever tip such that the cantilever is deflected by the force of interaction. The positions of a plurality of points on the cantilever are then rapidly measured and the force of interaction from the measured positions is then obtained using a non-Hookian model that accounts for higher order vibrational modes of the cantilever.

    Abstract translation: 用于确定样品与悬臂上的尖端之间的相互作用力的装置和方法。 该方法使用非Hookian方程来模拟悬臂,因为它被样品和悬臂尖之间的相互作用力所偏转。 样品定位在距离悬臂尖端预定距离处,使得悬臂由于相互作用的力而偏转。 然后快速测量悬臂上的多个点的位置,然后使用考虑悬臂的较高阶振动模式的非Hookian模型获得来自测量位置的相互作用力。

    Resistive stabilization of the electrospray ionization process
    39.
    发明授权
    Resistive stabilization of the electrospray ionization process 失效
    电喷雾电离过程的电阻稳定

    公开(公告)号:US06452166B1

    公开(公告)日:2002-09-17

    申请号:US09552646

    申请日:2000-04-19

    CPC classification number: H01J49/165

    Abstract: An electrical equivalent circuit is provided for an electrospray process. It is a series circuit which includes a power supply voltage (Vapp), a voltage (Vec) established at the electrochemical contact to the solution, a solution resistance (Rs), a constant current regulator which represents the processes of charge separation and charge transport in the gap between the spray needle aperture and the counter electrode, and a voltage (Vcn) caused by charge neutralization at the counter electrode. A current i, established by the constant current regulator flows throughout the entire circuit. Current-voltage curves are developed for each part of the circuit. From these it is shown that in the case where Rs is negligible (the power supply is connected directly to a conducting needle) the shape of the current-voltage curve is dictated by the constant current regulator established by the charge separation process, the gap, and the counter electrode. The solution resistance is significant if a non-conducting needle is used so that the electrochemical contact to the solution is remote from the tip. The high series resistance acts to stabilize the operation of an electrospray ionization device enabling operation over a wider range of experimental conditions than without it. This occurs somewhat naturally in a narrow-bore glass capillary when the contact to the solution is several cm from the capillary tip. Stability can be achieved with a separate series resistor for glass needles with tip contact, metal-coated glass needles, wide-bore glass needles and metal needles.

    Abstract translation: 提供电等效电路用于电喷雾过程。 它是一个串联电路,其包括电源电压(Vapp),在与溶液的电化学接触处建立的电压(Vec),溶液电阻(Rs),表示电荷分离和电荷传输过程的恒定电流调节器 在喷针孔和对电极之间的间隙中,以及由对电极上的电荷中和引起的电压(Vcn)。 由恒流稳压器建立的电流i流经整个电路。 为电路的每个部分开发电流 - 电压曲线。 从这些可以看出,在Rs可忽略(电源直接连接到导电针)的情况下,电流 - 电压曲线的形状由电荷分离过程建立的恒定电流调节器,间隙, 和对电极。 如果使用非导电针以使得溶液的电化学接触远离尖端,则溶液电阻是显着的。 高串联电阻用于稳定电喷雾离子化装置的操作,使得能够在更宽的实验条件范围内进行操作,而不需要它。 当与溶液的接触距离毛细管尖端几厘米时,这在某些狭窄的玻璃毛细管中会发生。 可以通过单独的串联电阻器实现稳定性,用于具有尖端接触的玻璃针,金属涂覆的玻璃针,宽孔玻璃针和金属针。

    Increased ion beam throughput with reduced beam divergence in a dipole magnet
    40.
    发明授权
    Increased ion beam throughput with reduced beam divergence in a dipole magnet 失效
    增加离子束通量,减少偶极子磁体中的光束发散

    公开(公告)号:US06323493B1

    公开(公告)日:2001-11-27

    申请号:US09383772

    申请日:1999-08-26

    CPC classification number: H01J37/3266 H01J37/04

    Abstract: Spreading of an ion beam when passing through a dipole magnet is reduced or suppressed by electrostatic ion beam confinement which supplements magnetic confinement which may be provided. The magnetic confinement is enhanced by the provision of a magnetic mirror through concentration and localized increase of the dipole field with a concave profile of the pole pieces faces and/or provision of permanent magnets or localized regions of material of increased permeability to form magnetic cusps. Pitch and geometry of convex portions of the pole piece faces are adjusted to increase the mirror ratio and the location of the maximum mirror field relative to the thickness of a graphite or insulating liner which may be employed. Electrostatic confinement elements in the form of negatively charged electrodes and/or electrically isolated electrodes or insulators which assume a negative charge. Ionization of plasma between the pole pieces may be enhanced by application of a VHF/UHF field having a frequency of about 40 MHz to 100 MHZ or higher.

    Abstract translation: 当通过偶极子磁体时,离子束的扩散通过静电离子束限制被减少或抑制,这补充了可以提供的磁约束。 通过集中提供磁镜并通过极片面的凹形轮廓和/或提供永久磁体或增加渗透性的材料的局部区域形成磁尖来提供磁镜来增强磁约束。 调节极片面的凸起部分的几何形状和镜片面的几何形状,以增大镜面比率和最大镜面相对于可采用的石墨或绝缘衬垫的厚度的位置。 具有带负电荷的电极和/或电隔离电极或绝缘体形式的静电限制元件,其承担负电荷。 可以通过施加具有约40MHz至100MHz或更高频率的VHF / UHF场来增强极片之间的等离子体的电离。

Patent Agency Ranking