摘要:
According to one embodiment, a pattern formation method includes placing an imprint resist film on a substrate, then imprinting a pattern in the imprint resist film. The pattern has a first loop section in a first end portion and a second loop section in a second end portion. After the imprint resist film has been patterned, it is selectively irradiated between the first loop section and the second loop section. The imprint resist film is then etched under conditions leaving the selectively irradiated portion of the imprint resist film and removing the unirradiated portion of the imprint resist film.
摘要:
The disclosed embodiments relate to a charged particle source module for generating and emitting a charged particle beam, such as an electron beam, comprising: a frame including a first frame part, a second frame part, and one or more rigid support members which are arranged between said first frame part and said second frame part; a charged particle source arrangement for generating a charged particle beam, such as an electron beam, wherein said charged particle source arrangement, such as an electron source, is arranged at said second frame part; and a power connecting assembly arranged at said first frame part, wherein said charged particle source arrangement is electrically connected to said connecting assembly via electrical wiring.
摘要:
In one embodiment, a data processing method is for creating write data from design data, and registering the write data into a writing apparatus. The method includes applying, to a plurality of pieces of first frame data into which first chip data of the design data is divided, a plurality of conversion processes to create the write data, and applying a plurality of pre-processes to a plurality of pieces of second frame data into which second chip data of the write data is divided, and registering the second chip data into the writing apparatus. The plurality of conversion processes and the plurality of pre-processes are each performed in a pipeline processing on a per-frame basis. The write data is registered into the writing apparatus on a per-chip basis, on a per-virtual chip basis, or on a per-frame basis. The virtual chip includes a plurality of chips combined together.
摘要:
A dynamic pattern generator (DPG) device and method of making a DPG device are disclosed. The DPG device is used in semiconductor processing tools that require multiple electron-beams, such as direct-write lithography. The device is a self-aligned DPG device that enormously reduces the required tolerances for aligning the various electrode layers, as compared to other design configurations including the non-self-aligned approach and also greatly simplifies the process complexity and cost. A process sequence for both integrated and non-integrated versions of the self-aligned DPG device is described. Additionally, an advanced self-aligned DPG device that eliminates the need for a charge dissipating coating or layer to be used on the device is described. Finally, a fabrication process for the implementation of both integrated and non-integrated versions of the advanced self-aligned DPG device is described.
摘要:
The invention relates to an electrode stack (70) comprising stacked electrodes (71-80) for manipulating a charged particle beam along an optical axis (A). Each electrode comprises an electrode body with an aperture for the charged particle beam. The electrode bodies are mutually spaced and the electrode apertures are coaxially aligned along the optical axis. The electrode stack comprises electrically insulating spacing structures (89) between each pair of adjacent electrodes for positioning the electrodes (71-80) at predetermined mutual distances along the axial direction (Z). A first electrode and a second electrode each comprise an electrode body with one or more support portions (86), wherein each support portion is configured to accommodate at least one spacing structure (89). The electrode stack has at least one clamping member (91-91c) configured to hold the support portions (86) of the first and second electrodes, as well as the intermediate spacing structure (89) together.
摘要:
An exposure pattern is computed which is used for exposing a desired pattern on a target in a charged-particle multi-beam processing apparatus so as to match a reference writing tool, possible of different type: The desired pattern is provided as a graphical representation suitable for the reference tool, such as a raster graphics, on the image area on the target. A convolution kernel is used which describes a mapping from an element of the graphical representation to a group of pixels which is centered around a nominal position of said element. A nominal exposure pattern is calculated by convolution of the graphical representation with the convolution kernel, said nominal exposure pattern being suitable to create a nominal dose distribution on the target when exposed with the processing apparatus.
摘要:
A charged-particle beam lithographic system (100) delineates a pattern on a substrate (2) by directing a charged-particle beam (L) at the substrate. The system (100) includes a substrate stage (10) on which the substrate (2) is disposed and a substrate cover (20). The cover (20) has a frame portion (22) that covers an outer peripheral portion of the substrate (2) as viewed within a plane. The frame portion (22) has a first part (22a) disposed on the stage (10) and a second part (22b) capable of being loaded and unloaded on and from the stage (10) by a transport portion (40). When the second part (22b) is loaded on the stage (10), it is electrically grounded.
摘要:
A method and system for fracturing or mask data preparation or proximity effect correction is disclosed in which a series of charged particle beam shots is determined, where the series of shots is capable of forming a continuous non-manhattan track on a surface, such that the non-manhattan track has a line width roughness (LWR) which nearly equals a target LWR. A method and system for fracturing or mask data preparation or proximity effect correction is also disclosed in which at least two series of shots are determined, where each series of shots is capable of forming a continuous non-manhattan track on a surface, and where the space between tracks has space width roughness (SWR) which nearly equals a target SWR.
摘要:
A method of manufacturing a substrate is disclosed. The method includes receiving a plurality of pixel elements, wherein each of the pixel elements includes data members; and transferring the data members to a plurality of exposing devices that are configured to conditionally expose the substrate with an incident energy beam when coupled with the data members, wherein different data members of one pixel element are transferred at different system cycles.
摘要:
An embodiment of a method of lithography includes generating a beam of electrons. A first pixel and a second pixel are each configured to pattern the beam. Using time domain multiplex loading, the first and second pixels are controlled such that the beam is patterned. The patterning includes receiving a first clock signal and using the first clock signal to generate a second clock signal and a third clock signal. The second clock signal is sent to the first pixel and sending the third clock signal is sent to the second pixel.