Abstract:
A communication system includes a transmission path through which an optical signal is propagated; and dispersion slope imparting sections provided on a transmitting side and a receiving side of the transmission path, the dispersion slope imparting sections imparting different dispersion and dispersion slope characteristics in accordance with a wavelength band of the optical signal, wherein the dispersion and dispersion slope characteristics imparted by the dispersion slope imparting section on the transmitting side is different from those on the receiving side.
Abstract:
An optical transmission device includes an extractor that extracts respective optical signals from optical signals multiplexed from a plurality of optical signals of different wavelengths, a detector that detects wavelengths of the extracted respective optical signals, a storage that stores the wavelengths of the detected respective optical signals, and a processor that is operative to derive trends in wavelength variation of the respective optical signals based on the detected respective optical signals and the respective optical signals stored in the storage, and determines that either one or both of the extractor and the detector cause the wavelengths to be varied when the trends in wavelength variation of two or more wavelengths are the same.
Abstract:
A network for delivering optical power over an optical conduit includes at least one optical power source delivering optical power to multiple outlet power subsystems the subsystem managing demands for power from the multiple outlet sinks.
Abstract:
An optical receiving device includes multiple input ports to which light is input; multiple amplifiers that are arrayed and provided corresponding to the input ports, respectively, each of the amplifiers amplifying and outputting light input from a corresponding input port among of the input ports; a photo diode that converts light into an electrical signal; and a lens that inputs to the photo diode light output from the amplifiers.
Abstract:
A system, e.g. for optical communication, includes an I-Q modulator and a transmission signal processor. The I-Q modulator is configured to modulate a first light source in response to first I and Q modulation signals. The transmission signal processor is configured to receive a data stream including data corresponding to a first data subchannel. The processor maps the data subchannel to an optical transmission subchannel and outputs the first I and Q modulation signals. The I and Q modulation signals modulate the light source to produce an optical transmission signal that includes wavelength components corresponding to the optical transmission subchannel.
Abstract:
An optical transmission circuit comprises a light emitting element and a differential amplifier circuit to which differential input signals are input to modulate an optical output of the light emitting element. The differential amplifier circuit includes a first current source, a first transistor, a second transistor, a third transistor, and a fourth transistor. The first current source is connected to a first potential source and the sources of the third and the fourth transistor are connected to a second potential source. The differential amplifier circuit includes a second current source having one end that is connected to a third potential and another end that is connected to a drain of the second transistor, and a fifth transistor having a gate that is connected to the gate of the fourth transistor, a source that is connected to the second potential, and a drain that is connected to the light emitting element.
Abstract:
The present invention discloses a receiving apparatus, a sending apparatus, a system and a method for optical polarization division multiplexing. The receiving apparatus includes: an optical splitter, configured to: split a received polarization-multiplexed optical signal into two identical polarization-multiplexed optical signals, where the two polarization-multiplexed optical signals both include a first State Of Polarization (SOP) optical signal and a second SOP optical signal, and the first SOP optical signal is an optical signal when a horizontal-SOP optical signal is transmitted to the optical splitter, and the second SOP optical signal is an optical signal when a vertical-SOP optical signal is transmitted to the optical splitter; a horizontal optical signal obtaining apparatus, connected to the optical splitter and configured to separate the horizontal-SOP optical signal; and a vertical optical signal obtaining apparatus, connected to the optical splitter and configured to separate the vertical-SOP optical signal.
Abstract:
Polarization scattering compensation device and method are disclosed. In the device, a time sequence alignment unit aligns time sequences of signals in the first and second polarization state transmitted simultaneously; a polarization scattering estimation unit estimates a scattering coefficient of a scattering by the signal in the first polarization state on the signal in the second polarization state, and a scattering coefficient of a scattering by the signal in the second polarization state on the signal in the first polarization state; and a polarization scattering removal unit removes the scattering by the signal in the first polarization state on the signal in the second polarization state, and the scattering by the signal in the second polarization state on the signal in the first polarization state, in accordance with the scattering coefficients.
Abstract:
Exemplary embodiments include a method and systems for impairment compensation in a communication system. The systems can include an electronic phase conjugation system that receives an incoming optical signal from a first section of a fiber optic link, converts the incoming optical signal to an in-phase electric signal and a quadrature electrical signal, and generates a phase conjugated outgoing optical signal from the in-phase and quadrature electrical signals. The phase conjugated outgoing optical signal compensates for impairment of the fiber in the communication system.
Abstract:
An apparatus for transmitting visible light communication data is provided, the apparatus including a common modulation unit generating a modulated signal for transmitting a first visible light communication data, a plurality of individual modulation units generating modulated signals for transmitting a plurality of second visible light communication data, and a plurality of light emitting units receiving the modulated signals from the plurality of individual modulation units, respectively, and outputting visible light signals, wherein an output of the common modulation unit is the input as an output control signal of the individual modulation units.