Abstract:
A lithographic printing plate precursor includes a support and an image-recording layer containing a binder, a radical polymerizable compound and a radical polymerization initiator, wherein the binder comprises a multifunctional thiol having from 6 to 10 functional groups as a nucleus and polymer chains connected to the nucleus through a sulfide bond and the polymer chains have a polymerizable group.
Abstract:
In various embodiments, a recording medium comprises an oleophilic substrate and, thereover, a topmost oleophobic layer comprising a cured polymeric silicone matrix that consists essentially of the addition-cure reaction product of a vinyl-functional polydialkylsiloxane and a silane cross-linking agent. The vinyl-functional polydialkylsiloxane has a molecular weight ranging from 30,000 to 75,000 or 110,000 to 130,000. If the molecular weight of the vinyl-functional polydialkylsiloxane is within the range of 30,000 to 75,000, the molar ratio of silane groups to vinyl groups is within the range of about 11:1 to about 25:1; and if the molecular weight of the vinyl-functional polydialkylsiloxane is within the range of 110,000 to 130,000, the molar ratio of silane groups to vinyl groups is from about 5:1 to about 27:1. The recording medium may be used as a lithographic printing plate.
Abstract:
A method and apparatus for producing an imaged lithographic printing plate are described, wherein the method comprises single-step processing and drying from at least the printing side of the plate, wherein the drying step is carried out immediately after squeezing the processed plate.
Abstract:
A developer solution can be used to prepare lithographic printing plates from negative-working precursors. The developer solution has a pH of at least 4 and up to and including 11. It also comprises both an ethylene/propylene glycol block copolymer and either or both of a sugar alcohol or a mono- or oligosaccharide. This combination of components provides desired processing to provide lithographic printing plates that can be used for printing without any post-development treatments with other solutions.
Abstract:
Negative-working, infrared radiation-sensitive lithographic printing plate precursors have an imageable layer on a substrate. The imageable layer includes a free radically polymerizable component, an initiator composition capable of generating free radicals upon exposure to infrared radiation, a polymeric binder, one or more infrared radiation absorbing compounds, and an inorganic phosphoric acid or inorganic phosphoric acid precursor. The lithographic printing plate precursors can be designed for either off-press or on-press development after IR imaging.
Abstract:
A method for preparing a lithographic printing plate includes treating a lithographic printing plate precursor including a hydrophilic support and an image-forming layer containing the following (i) to (iii) with an aqueous solution having a buffering ability: (i) a binder polymer comprising a repeating unit having a structure represented by the following formula (1); (ii) an ethylenically unsaturated compound; and (iii) a polymerization initiator, P-L-(CO2H)n (1) wherein P represents a part constituting a main chain skeleton of the polymer, L represents an (n+1) valent connecting group, and n represents an integer of 1 or more.
Abstract:
A method of making a lithographic printing plate includes the steps of a) providing a lithographic printing plate precursor including (i) a support having a hydrophilic surface or which is provided with a hydrophilic layer, (ii) a coating on the support including a photopolymerizable layer, a top layer, and optionally, an intermediate layer between the photopolymerizable layer and the support, wherein the photopolymerizable layer includes a polymerizable compound, a polymerization initiator, and a binder; b) image-wise exposing the coating in a plate setter; c) optionally, heating the precursor in a pre-heating unit; d) washing the precursor in a pre-washing station by applying water or an aqueous solution to the coating, thereby removing at least a portion of the top layer; and e) developing the precursor in a gumming station by applying a gum solution to the coating of the precursor, thereby removing the non-exposed areas of the photopolymerizable layer from the support and gumming the plate in a single step.
Abstract:
A lithographic printing plate precursor which is capable of undergoing on-press development by supplying at least one of printing ink and dampening water and includes a support and an image-recording layer, wherein the image-recording layer contains at least one of compounds represented by the formulae (1) to (3) as defined herein.
Abstract:
In ablation-type printing plates involving silicone acrylate top layers, curing at high oxygen levels not only substantially reduces or eliminates toning, but does not adversely affect plate durability or printing performance.
Abstract:
A device as well as method for treating without developing an imagewise exposed lithographic printing plate is disclosed. The device comprises a structure for providing a treating solution to the exposed plate. The exposed plate comprises on a substrate a photosensitive layer having hardened areas and non-hardened areas (for negative plate) or solubilized areas and non-solubilized areas (for positive plate). The non-hardened or solubilized areas of said photosensitive layer is removable with ink and/or fountain solution on a lithographic press. The treatment of the imagewise exposed plate allows one or more enhanced properties for the plate before on-press development, such as improved white light stability, enhanced or formation of visible image, improved hydrophilicity, or improved on-press developability.