Abstract:
A computer cluster includes a group of connected computers that work together essentially as a single system. Each computer in the cluster is called a node. Each node has a boot device configured to load an image of an operating system into the node's main memory. Sometimes the boot device of a first node experiences a problem that prevents the operating system from loading. This can affect the entire cluster. Some aspects of the disclosure, however, are directed to operations that determine the problem with the first node's boot device based on a communication sent via a first communications network. Further, the operations can communicate to the first node a copy of boot data from a second node's boot device. The copy of the boot data is sent via a second communications network different from the first communications network. The copy of the boot data can solve the first boot device's problem.
Abstract:
A method for sharing data blocks in a hierarchical file system in a storage server includes allocating a plurality of data blocks in the file system, and sharing data blocks in the file system, without using a persistent point-in-time image, to avoid duplication of data blocks. A method for identifying data blocks that can be shared includes computing a fingerprint for each of multiple data blocks to be written to a storage facility and storing the fingerprint with information identifying the data block in an entry in a set of metadata. The set of metadata is used to identify data blocks which are duplicates.
Abstract:
Techniques for mobile clusters for collecting telemetry data and processing analytic tasks, are disclosed herein. The mobile cluster includes a processor, a plurality of data nodes and an analysis module. The data nodes receive and store a snapshot of at least a portion of data stored in a main Hadoop storage cluster and real-time acquired data received from a data capturing device. The analysis module is operatively coupled to the processor to process analytic tasks based on the snapshot and the real-time acquired data when the storage cluster is not connected to the main storage cluster.
Abstract:
Load-balancing techniques for auditing file accesses in a storage system are described. In one embodiment, for example, an apparatus may a processor circuit and a storage medium comprising instructions for execution by the processor circuit to receive a file access request notification identifying a stored file in a storage system, determine a destination volume for a file access record corresponding to an access of the stored file, the destination volume selected from among a plurality of candidate staging volumes of the storage system, and direct the file access record to the destination volume. Other embodiments are described and claimed.
Abstract:
Systems and methods efficiently distribute information, such as path name, attributes and object information, corresponding to changes in a content repository to remote nodes in a network using storage-layer/object-based protocols. A difference monitoring client monitors name space and object space changes by identifying inodes which have been modified on storage volumes between two or more snapshots. The monitoring client builds a list which may include name information, object space information and attributes such as file size and permissions for each of the changed inodes that is utilized to update the edge nodes. Systems and methods also provide for geo-scale content distribution from a central repository to edge nodes using a storage-layer/object protocol. A caching mechanism is utilized to cache requested content at an edge node. Cached content may be maintained at the edge node during use and/or for an additional predetermined period. Difference monitoring client may track such cached content.
Abstract:
One or more techniques and/or systems are provided for managing one or more worker threads. For example, a utility list queue may be populated with a set of work item entries for execution. A set of worker threads may be initialized to execute work item entries within the utility list queue. In an example, a worker thread may be instructed to operate in a decentralized manner, such as without guidance from a timer manager thread. The worker thread may be instructed to execute work item entries that are not assigned to other worker threads and that are expired (e.g., ready for execution). The worker thread may transition into a sleep state if the utility list queue does not comprise at least one work item entry that is unassigned and expired.
Abstract:
An indication of an event occurrence is received. The indication of the event occurrence is associated with a severity. A tag associated with the indication of the event occurrence is determined. It is determined whether the tag is the same as a preceding tag. In response to a determination that the tag is not the same as the preceding tag, a component is notified of the event occurrence, the tag is stored for later use, and an indication of the severity associated with the indication of the event occurrence is stored.
Abstract:
In one embodiment, a node of a cluster executing a storage input/output (I/O) stack having a volume layer, stores a multi-level dense tree metadata structure. Each level of the dense tree metadata structure includes volume metadata entries for storing volume metadata. One or more non-volatile logs (NVLogs) are updated. The one or more NVLogs including a volume layer log configured to record changes to the volume metadata, wherein volume metadata entries inserted into a top-level of the dense tree metadata structure are recorded in the volume layer log. The node writes volume metadata entries from the volume layer log to one or more storage devices to be stored as extents.
Abstract:
A network storage server implements a method to limit simultaneous data transfers and efficient throttle management. The number of processes that can be simultaneously performed in the network storage server is limited. For the processes that do not exceed the limiting number, and are therefore allowed to be simultaneously performed, a throttle control is implemented on each of the processes to limit the amount of system resources that can be allocated to each of the processes. The processes are performed on the network storage server, and a total amount of system resources allocated to these processes does not exceed the available system resources of the network storage server.
Abstract:
Techniques for virtual machine shifting are described. An apparatus may comprise shifting component operative to shift a virtual machine (VM) between a hypervisor having one type of hypervisor platform and a destination hypervisor having an alternative type of hypervisor platform through use of a clone of the VM. The shifting is bi-directional between the host and the destination hypervisor. The apparatus may comprise a universal application programming interface (API) used for reconfiguring one or more network interfaces and one or more disks of the VM onto the destination hypervisor. Other embodiments are described and claimed.