Abstract:
A base station for providing dynamic power management is disclosed, comprising, a processor within an enclosure mounted in a vehicle, a power management unit coupled to the processor, a controller area network (CAN) bus monitoring system coupled to the power management unit and to a CAN bus of the vehicle, a voltage measurement module also coupled to the power management unit and to a battery of the vehicle; a baseband processor coupled to the processor, a first wireless access functionality coupled to the baseband processor, and a second wireless access functionality coupled to the baseband processor, wherein the power management unit is coupled to each of the first and the second wireless access functionality to enable access radio bringup, access radio shutdown, and graceful user detach based on a power state at the power management unit.
Abstract:
Described herein are systems and methods for providing software provisioning of functionality in a wireless communications device. Software-enabling functionality may include systems for granting a license to intellectual property or other pre-embedded functionality within a device. Communications to and from the device may be used to send or receive activation messages and/or licensing messages. Network capabilities may be provisioned using activation messages sent over the network. Activation messages may be sent in-band or out-of-band, for a device connected to the Internet and/or a mobile operator core network. Licenses may be required for any functions or intellectual property present on a given device. Activation may enable logical modules of a system-on-chip (SOC), functions of a software-defined radio (SDR), baseband, or DSP core. The disclosed systems and methods could thereby provide a new, flexible paradigm, namely, “Silicon as a Service (SaaS).”
Abstract:
A network node for facilitating data transfer is disclosed, comprising: a routing module configured to receive network link capacity information; a first radio interference operating on a first radio access technology and coupled to the routing module; and a second radio interface operating on a second radio access technology and coupled to the routing module, wherein the routing module is configured to receive packets directed to a third virtual radio interface and route the packets to one or both of the first and the second radio interfaces to provide throughput at the third virtual radio interface that is greater than throughput available via either the first or the second radio interfaces independently.
Abstract:
Systems and methods for an in-vehicle base station are described. In one embodiment, a mobile base station is disclosed comprising a first access radio for providing an access network inside and outside a vehicle; a second backhaul radio for providing a backhaul connection to a macro cell; and a global positioning system (GPS) module for determining a location of the mobile base station, and for transmitting the location of the mobile base station to a core network, wherein a transmit power of the first access radio is configured to increase or decrease based on a speed of the vehicle.
Abstract:
Systems and methods are disclosed for permitting higher transmit power at a mobile device. In one embodiment, a method is disclosed, comprising: receiving, at a base station, an emergency request from a mobile device; sending, from the base station to a neighboring base station, a high power reservation message to reserve one or more radio resource blocks at the neighboring base station for non-use; and sending, from the base station to the mobile device, a resource allocation including the one or more radio resource blocks and a power control message requesting high transmit power.
Abstract:
A method for adjacent channel interference cancellation may be disclosed, comprising collecting adjacent channel usage samples at a first time; assigning coefficient weights in an adjacent channel interference model based on the adjacent channel usage samples; determining whether a radio may be available for measuring current adjacent channel usage; adjusting coefficient weights based on the current adjacent channel usage; and canceling noise in an adjacent channel at a second time based on the coefficient weights. A radio frequency chain may be coupled to the output of the radio transceiver and configured to sample adjacent channel interference caused by the radio transceiver.
Abstract:
A heuristic approach to configuration and/or planning for wireless networks is disclosed herein. In one embodiment, statistics relating to mobile device cell usage are collected and monitored. The statistics may include UE measurements (RSRP/RSRQ), UE location, number of connection requests, duration of connectivity, average traffic load associated with the users, channel utilization, and other statistics. Based on statistical analysis of the data collected, neural network analysis, data fitting, or other analysis, adjustments to cell coverage parameters such as handover thresholds, inactivity timer values, contention window size, inter-frame duration, transmit power, DRX cycle duration, or other parameters may be identified.
Abstract:
Systems and methods are disclosed for adjusting transmit power in a wireless network. In one embodiment, a method is disclosed that includes identifying a selected base station with a first coverage area for adjustment of transmit power; identifying a plurality of neighboring base stations with coverage areas nearby the first coverage area; retrieving a plurality of signal strength measurements from a plurality of mobile devices within the coverage areas of the plurality of neighboring base stations; determining, based on the plurality of measurements, an effect on the plurality of mobile devices within the coverage areas of the plurality of neighboring base stations; and sending an instruction for adjustment of transmit power to the selected base station.
Abstract:
Systems and methods are presented for using a mobile multi-radio access technology (multi-RAT) device for locating an individual, for example, in a search-and-rescue application. The multi-RAT device may permit the individual's cell phone to attach to the mobile multi-RAT device, and then may use a directional antenna to locate the individual. Various embodiments of such a device are described.
Abstract:
This invention discloses a heterogeneous mesh network comprised of multiple radio access technology nodes, wherein nodes can function dynamically, switching roles between client and server. Moreover, these nodes can operate in a heterogeneous fashion with respect to one another. In an alternate embodiment, the invention describes a mesh network comprised of nodes operating over TV white-space. This invention additionally discloses self-organizing network embodiments and embodiments that include novel methods of monitoring operational parameters within a mesh network, adjusting those operational parameters, and creating and implementing routing tables.