Abstract:
A method for reconnection and connection of sensor groups, especially hydrophone groups or channels in a seismic cable, where the active sections in the seismic cable are connected with electronic modules or one another via connector plugs, is based on the principle that a specific number of hydrophone groups are connected symmetrically on each side of each electronic module. The number of connected hydrophone groups on each side is identical and constitutes at least one respective active section. A summation of a set of hydrophone groups in a section is performed automatically by connecting this section with another section or by connecting a respective section and the electronic module.
Abstract:
The invention relates to a device for carrying out measuring and/or servicing operations in a well (4), comprising a tubing (2) adapted for being coiled round a drum (1) and a measuring instrument (3) fastened to the end of the tubing.The tubing comprises inwardly a rod (17) elastic in flexure and resisting to compressive stress, well suited for allowing the introduction thereof into tubing (2), notably by thrust.An energy or information transfer line (12) is incorporated during manufacturing of rod (17).Rod (17) is made of a polymeric material comprising reinforcing fibers and it is centered inside the tubing.The invention further relates to a process for assembling the rod in the tubing and to the use of the device in a well producing an oil effluent.
Abstract:
A marine seismic seabed cable for use on or near the seabed includes at least one pulling cable, a data cable, and a sleeve which surrounds the data cable and the pulling cable. Groups of geophones and position metering instruments are placed along the cable with the position metering instruments and geophones being disposed in a geophone sphere. The geophone sphere and the pulling cables are to a substantial degree mechanically isolated from each other so that, for example, shocks and signals against the seabed cable will only be transferred to a minor extent to the geophone sphere.
Abstract:
A tension relieving device for seismic cables or cable sections having a stretch element (4) which is passed in loops between two end pieces (1,2) designed to be attached to end contact pieces on the seismic cable. The stretch element (4) is passed in at least two loops, with at least four lengths (8) in the longitudinal direction of the device, in that the loops are passed through holes (6) and curved, tubular guides (12) in the end pieces. On their lengths (8) the stretch elements (4) are equipped with stoppers (10) with diameters greater than the holes (6) in the end pieces (1,2). In the central area of the end pieces (1,2) between the stretch element guides a preferably central opening (9) is made to allow the cable's wires etc. to pass through.
Abstract:
In accordance with an illustrative embodiment of the present invention, a connector assembly for plugging geophones into a leader cable includes rigid thermoplastic inserts that are positioned within molded polyurethane bodies and molecularly bonded thereto. The male connector member carries a replaceable silicone O-ring seal in an external annular groove therein which engages an internal annular recess on the female body when the connection is made up. The seal keeps out moisture, and releasably couples the connector members together.
Abstract:
A wet end termination for a towed cable. An elongated cylindrical structure includes a bellows surface that is extendable under towing force. The cylindrical structure includes opposed tapered ends, the rear ends encapsulated the region of splice between the optical fiber conductor of the cable and the optical circuit of the towed array.
Abstract:
A metallic down hole seismic sensor cable for operating at temperatures up to about 400.degree. F. and pressures up to about 5000 psig is provided. The seismic sensor cable includes a flexible metallic conduit sized for receiving a seismic sensor, and means for transmitting output generated by the seismic sensor. The cable is preferably constructed of stainless steel. An inert curable heat resistant material substantially fills the unoccupied spaces of the assembled seismic sensor cable.
Abstract:
A marine acoustic array employs a plurality of sections connected together sequentially with the outer surfaces of said sections having a non-smooth configuration to create a water flow along the length of the array as it is towed through a water layer that causes sensors within the array to provide outputs having improved signal-to-noise ratios.
Abstract:
A hydrophone having a self-contained means for warning an operator that the hydrophone has reached or exceeded a safe design depth limit. The active elements of the hydrophone are bender-type piezoelectric wafers. An internal stop is provided such that in the presence of a hydrostatic pressure that exceeds a safe design limit, the wafers bottom out against the stop. The stop short-circuits the electrical output signals of the wafers, warning the operator that the hydrophone is in danger of destruction.
Abstract:
An all fiber optic hydrophone or sensor array has significant size, cost, reliability, and operational advantages over other hydrophone arrays. The array comprises a distributed network of appropriately coiled optical fiber encased in commercially available marine cable. The terminal end of the sensor array preferably contains a modulated miniature solid-state laser diode and photodetector matrix which mate to power and multiplexing electronics. The distributed sensor assembly itself is entirely passive. The hydrophone array comprises an optical signal source and at least one transmitting optical fiber for guiding signals output from the optical signal source. The array further includes a plurality of sensing interferometers coupled to the transmit optical fiber and means for measuring differential changes in the optical path of each sensing interfereometer. The hydrophone array comprises means for superimposing signals output from each sensing interferometer, and a detector for converting optical signals in the receive fiber into electrical signals. The signal processing system in the array includes a compensating interferometer having optical phase modulating means formed in one arm thereof.