Abstract:
An induction motor for a drum washing machine and a drum washing machine using the same are disclosed. An induction motor for a drum washing machine includes: a concentrated winding stator with a plurality of teeth that project from a circumference thereof and a coil wounded around each tooth; a rotor frame connected to a shaft directly fixed to a rotatable drum in the drum washing machine, wherein the concentrated winding stator is located in the rotor frame; and a rotor conductor that generates induced currents in closed circuits along a circumferential direction of the rotor frame when electric currents are applied to the coils so that the rotor frame rotates, wherein the closed circuit is skewed.
Abstract:
An electrical machine comprises a stator and a rotor. The rotor is adapted to magnetically interact with the stator to promote rotation of the rotor about an axis. The rotor includes a rotor core and a plurality of magnetized arcs supported by the rotor core. The plurality of magnetized arcs defines an outermost circumference. The rotor and the plurality of magnetized arcs include a first magnetized arc, a discontinuity disposed adjacent to the first magnetized arc along the outermost circumference, a second magnetized arc disposed adjacent to the discontinuity along the outermost circumference, and a magnetization pattern of alternating magnetic poles formed on the plurality of magnetized arcs. The magnetization pattern includes a first magnetic pole skewed with respect to a second magnetic pole to form an arc of magnetization skew.
Abstract:
An electric rotating machine comprises: a stator in which a coil is wound on a plurality of teeth in concentrated winding, and the coil is connected to a three-phase power supply; and a rotor disposed in opposition to the teeth of the stator; wherein a ratio between the number of poles and the number of slots of the stator is 1:3. There is no higher harmonics of magnetomotive force in low order close to fundamental wave, thus enabling efficient operation of the electric rotating machine. Furthermore, owing to the stator of concentrated winding, it is possible to provide an electric rotating machine of high productivity with small coil end, high mass production, and high space factor.
Abstract:
An electric power steering system for a vehicle includes a steering wheel and a steering shaft that is connected to the steering wheel. A worm gear is connected to the steering shaft. A worm is threadably engaged to the worm gear. A permanent magnet motor is connected to the worm. The permanent magnet motor includes a stator with twelve slots and a rotor with ten poles. The rotor includes one or more axial rotor sections. If more than one axial rotor section is employed, the axial rotor sections are rotationally offset. The axial rotor sections are rotationally offset by an offset angle that is equal to a cogging angle divided by the number of axial rotor sections. The rotor includes breadloaf, spoke, radial or arc permanent magnets.
Abstract:
In order to provide a less expensive generator, a rotor using nonmagnetic beams is disclosed. The rotor includes a magnetic steel rim connected to a main generator shaft by a hub. The magnetic rim supports the components of the rotor, which includes a plurality of magnets and pole pieces. The pole pieces are connected to the rim with non-magnetic standoffs and nonmagnetic fasteners. The magnets are supported radially by nonmagnetic beams. The magnets are retained tangentially by pole pieces and radially by wedges. The components of the rotor are further retained axially between plates coupled to the rim and a shoulder on the pole pieces.
Abstract:
Teeth of a first core sub-part and teeth of a second core sub-part are alternately arranged in a circumferential direction. Each tooth has a tooth main body, which may include two tilted portions at two opposed circumferential ends, respectively, of the tooth main body. Each tilted portion is angled relative to a corresponding direction parallel to the axial direction of the core. Each one of the first and second core sub-parts may have fitting recesses and fitting projections, which are engaged with the fitting projections and the fitting recesses of the other one of the first and second core sub-parts. Each tapered wall surface of each fitting recess is angled relative to a corresponding direction parallel to the axial direction. Similarly, each tapered wall surface of each fitting projection is angled relative to a corresponding direction parallel to the axial direction.
Abstract:
An electrical machine comprises a stator and a rotor. The stator includes a plurality of stator teeth and a winding with compact coils disposed on the teeth. The winding has (m) phases and (p) poles; where (m) is an integer and is greater than or equal to two; where (p) is an integer, is greater than or equal to two, and is an even number. The rotor has a magnetization pattern can include a magnetization skew. In some constructions, each stator includes one or more channels along a surface adjacent to the rotor. The channels can be of various shapes including a trapezoidal shape or a curvilinear shape.
Abstract:
A brushless DC motor including a stator having plural slots; and a rotor which has plural permanent magnets and is divided into three rotor blocks in a rotation axis direction, the three rotor blocks being layered so that the arrangement angles of the rotor blocks differ from each other by an amount of a mechanical angle in a rotary direction that is equivalent to one third of a pulsation period of cogging torque generated by the rotor and stator. A brushless DC motor including a rotor having plural magnetic poles provided at an equal pitch in a circumferential direction by mounting permanent magnets in magnet mounting holes; and a stator having plural slots arranged at an equal pitch in a circumferential direction. The magnetic poles of the rotor include magnetic poles whose magnet deviation angle formed by the central line of an effective polar opening angle and the central line of the magnet mounting hole is the first angle; and magnetic poles whose magnet deviation angle is the second angle different from the first angle.
Abstract:
It is intended to suppress the vibration and noise during operation of a concentrated winding electric motor and to provide an electric motor with high efficiency, low vibration and low noise. A skew is formed on at least one of a stator (10) and a rotor (20), arranged with a concentrated winding, and a winding vibration damping body (18) is inserted between windings (13) of different phases within a winding groove (19) and contacted therewith.
Abstract:
A magneto generator for self-powered apparatuses; the magneto generator comprises a stator provided with an electric winding, and a permanent magnet rotor coaxially arranged to the stator. The stator and the rotor have a first, and respectively a second pole system which together with the electric winding define a multiphase electromagnetic system connected to a bridge rectifier, secured to the stator. The poles of the stator and the poles of the rotor have opposite polar surfaces in which the axis of each polar surface of the rotor, is slanted with respect to a reference line parallel to the longitudinal axes of the polar surfaces of the stator.