摘要:
A process for the production of 1-aminoalkane-1,1-diphosphonates of the formula ##SPC1##Wherein R.sub.1 is a member selected from the group consisting of hydrogen, lower alkyl and phenyl, R.sub.2 and R.sub. 3 are members selected from the group consisting of hydrogen, alkyl having 1 to 22 carbon atoms, cycloalkyl having 5 to 6 carbon atoms, phenyl, alkylphenyl having 7 to 18 carbon atoms, phenylalkyl having 7 to 18 carbon atoms and together with the nitrogen atom, piperidino, pyrrolidino and morpholino, and X is a member selected from the group consisting of hydrogen, alkali metal, ammonium, pyridinium, guanidinium and mono-, di-, and tri-lower-alkanol-ammonium with the proviso that at least one of R.sub.1, R.sub.2 and R.sub.3 is other than hydrogen, which consists essentially in reacting a phosphorus trihalide selected from the group consisting of phosphosus trichloride and phosphorus tribromide with a monocarboxylic acid amide of the formula ##SPC2##wherein the molecular weight of said carboxylic acid amide is over 46 and R.sub.1, R.sub.2 and R.sub. 3 have the above assigned meanings, at a temperature of from 0.degree. to 75.degree.C, subjecting the resultant reaction product to hydrolysis, and recovering said 1-aminoalkane-1,1-diphosphonates. The 1-aminoalkane-1,1-diphosphonates, some of which are novel, are capable of forming complexes with heavy metals.
摘要:
A synergistic sequestering agent composition comprising (a) 1-hydroxyethane-1,1-diphosphonic acid and its alkali metal and ammonium salts, or, preferably and (b) aminotrimethylenephosphonic acid and its alkali metal and ammonium salts, as well as (c) a phosphonopolycarboxylic acid selected from the group consisting of phosphonosuccinic acid, methylphosphonosuccinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid and their alkali metal and ammonium salts. The said mixture of sequestering agents is useful as a sequestering agent for aqueous solutions containing bivalent and trivalent cations especially in sub-stoichiometric amounts.
摘要:
In the process of plasticizing hardenable plastics in the form of dispersions and pastes, the use of fatty acid esters of polyoxyalkylene glycol having the formulaR.sub.1 --A--R.sub.2wherein R.sub.1 and R.sub.2 are acyls of the fatty acids having from 12 to 22 carbon atoms and A is a bivalent polyoxyalkylene glycol radical having a molecular weight of from 2000 to 4000 and a content of 40 to 50% by weight of ethylene oxide units and 50 to 60% by weight of propylene oxide units, as hydrophilic plasticizers for said plastic dispersions and pastes.
摘要:
The invention relates to a process for the prevention of inorganic salt precipitations in water or aqueous solutions by the additions to the solutions of small amounts of N-substituted aminoalkane-1,1-diphosphonic acids or their alkali metal salts or ammonium salts.
摘要:
Process for washing textiles in which the washing treatment is carried out in the presence of a cation exchanger containing carboxyl groups in the form of alkali salts and capable of removing calcium and magnesium ions from the washing liquor, and a washing agent for use in said process.
摘要:
The invention involves the use of aluminum salts of a fatty acid mixture of fatty acids having 12 to 22 carbon atoms consisting ofA. from 42% to 50% by weight of mono-olefinically unsaturated fatty acids, wherein at least 42% by weight are oleic acid,B. from 42% to 48% by weight of saturated fatty acids, wherein at least 42% by weight are saturated fatty acids having 16 to 18 carbon atoms, andC. from 2% to 10% by weight of poly-olefinically unsaturated fatty acids,As a mold releasing agent for the release of polyurethane foams from molds.
摘要:
A method for the production of hydroxyalkyl glycol ethers comprises reacting non-terminal epoxides with ethylene glycol in the presence of an alkoxylation catalyst and saturated hydrocarbons, in particular, saturated aliphatic hydrocarbons, as solvents.
摘要:
A process for the production of secondary alcohol ether sulfates which consists essentially of reacting adducts of secondary alkanols having from 6 to 22 carbon atoms adducted with 1 to 10 mols of an alkylene oxide selected from the group consisting of ethylene oxide and propylene oxide, said adduct having at least 1 mol of oxypropylene per mol of alcohol, with at least a molecular equivalent of a sulfating agent stronger than concentrated sulfuric acid at temperatures of from 0.degree.C to 50.degree.C and recovering said secondary alcohol ether sulfate.THE PRIOR ARTAt present secondary alcohols can be prepared from inexpensive raw materials, such as by oxidation of paraffins, substantially simpler than the preparation of primary alcohols. However, up to now the practical use of secondary alcohols is limited to non-ionic products prepared from them. Surface-active sulfates derived from secondary alcohols are used only in small amounts since the preparation of such raw materials for washing agents is very difficult, because of the instability of the secondary alkylsulfates. Primary alcohols, on the contrary, can be converted simply and with good yields into surface-active sulfates. In the sulfation of secondary alcohols, the conversion rates are low. In order to obtain somewhat usable products, expensive procedures have to be introduced, such as working with solvents and adduct formers, use of special sulfating agents, such as, for example, amidosulfonic acid, etc., as well as the addition of ethylene oxide adducts of primary alcohols. On the other hand, there is the possibility that by reaction of secondary alcohols with ethylene oxide, adducts with primary hydroxyl groups can be prepared, the sulfation products of which could be expected to have greater stability.It is, however, very difficult to prepare ethoxylates of secondary alcohols with a high conversion rate and small amounts of by-products. A higher conversion rate of the secondary alcohols with ethylene oxide can only be attained by relatively cumbersome procedures, such as, for example, a two-step ethoxylation in which in the first step an acidic catalyst is used and, after distilling off the unreacted secondary alcohol, in the second step an alkaline catalyst is utilized. However, the ethoxylated secondary alcohols obtained by this expensive procedure are also unsatisfactorily sulfated and can only be sulfated by the application of special procedures. This is difficult to explain since by the ethoxylation of secondary alcohols, adducts with primary hydroxyl groups were formed.OBJECTS OF THE INVENTIONAn object of the present invention is the development of a simple process for the production of secondary alcohol ether sulfates utilizing conventional strong sulfating agents to give products with a high degree of sulfation.Another object of the invention is the development of a process for the production of secondary alcohol ether sulfates which consists essentially of reacting adducts of secondary alkanols having from 6 to 22 carbon atoms adducted with 1 to 10 mols of an alkylene oxide selected from the group consisting of ethylene oxide and propylene oxide, said adduct having at least 1 mol of oxypropylene per mol of alcohol, with at least a molecular equivalent of a sulfating agent stronger than concentrated sulfuric acid at temperatures of from 0.degree.C to 50.degree.C and recovering said secondary alcohol ether sulfate.These and other objects of the invention will become more apparent as the description thereof proceeds.DESCRIPTION OF THE INVENTIONIt has now been surprisingly found that alkylene oxide adducts of secondary alcohols which contain at least one propylene glycol ether group can be sulfated simply with a high conversion rate. This result was the more unexpected since, as is known, on the introduction of propylene glycol ether groups by propoxylation, adducts with predominately secondary hydroxyl groups are formed. Therefore, the same difficulties in the further reaction of these adducts, especially in sulfation, would be expected as in the sulfation of secondary alcohols themselves. With this expectation, the sulfation of secondary alcohol propoxylates would appear to the expert as having little prospect of good yields.The invention relates, therefore, to a process for the preparation of surface-active ether and polyether sulfates which is characterized in that adducts of secondary alkanols having 6 to 22 carbon atoms adducted with 1 to 10 mols of alkylene oxide, possessing in the average at least 1 mol of propylene oxide per mol of alcohol, are reacted in a known manner at temperatures between 0.degree.C and 50.degree.C, particularly from 10.degree.C and 30.degree.C, with strong sulfating agents in at least stoichiometric amounts.As starting materials those adducts may be used that were obtained (1) by ethoxylation of secondary alcohols in the first step and subsequent propoxylation of the reaction mixtures, or (2) by reaction of secondary alcohols with ethylene oxide/propylene oxide mixtures, or (3) by the ethoxylation of reaction mixtures of secondary alcohols with propylene oxide, or (4) by pure propoxylation of secondary alcohols. The preferred starting materials are the adducts of propylene oxide to secondary alcohols or secondary alkanol propoxylates having 6 to 22 carbon atoms in the alkanol and 1 to 10 oxypropylene units.The mixed alkoxylates to be used contain preferably 1 to 4, particularly 2 to 3, oxyethylene groups. Of particular advantage among the pure propylene oxide adducts are those substance mixtures which were obtained by reaction of 1.5 to 5 mols of propylene oxide with 1 mol of secondary alcohol.The starting materials can be obtained by conventional alkoxylation methods. The alkoxylation can be carried out both anionically, in the presence of alkaline alkoxylation catalysts, such as alkali metal hydroxides or alkali metal alcoholates, particularly sodium, potassium and lithium lower alkanolates, and cationically in the presence of acidic catalysts, such as BF.sub.3, or in the presence of the tertiary oxonium salts described as alkoxylation catalysts in Belgian Pat. No. 715,048.If mixed adducts are used which have been obtained by propoxylation of ethylene oxide adducts of secondary alcohols as starting materials, such mixed adducts are preferred in which the alkoxylation in the first step was carried out by a cationic catalyst and in the second step with an anionic catalyst.Among the mixed adducts which are obtained by simultaneous addition of ethylene oxide and propylene oxide, or by propoxylation in the first step and ethoxylation in the second step, as well as in the pure propoxylation products, these are preferably prepared by reaction with an anionic catalyst.The secondary alcohols utilized to prepare the alkoxylation mixtures can be either compounds of uniform chain length or mixtures of homologs. Of particular economic advantage are those alcohol mixtures which have been obtained by the oxidation of paraffins in the presence of boron compounds, such as, for example, boric acid, boron trioxide, borates, boric acid esters, as well as other known reagents for the formation of secondary alcohols, such as arsenic acid, arsenic acid esters, arsenic trioxide, and others.The alkoxylation mixtures utilizable for the subsequent sulfation can be used as crude products, that is, without intervening purification or processing operations. This is of essential importance for the technical execution of the process. These crude alkoxylation mixtures contain, therefore, in addition to the desired alkylene oxide adducts of secondary alcohols, as secondary constituents, the corresponding alkylene and/or polyalkylene glycols as well as, possibly, non-reacted secondary alcohol. The sulfation of the alkoxylate mixture is preferably carried out in the temperature range of from 10.degree.C to 30.degree.C.By "strong sulfating agents" are meant those which are stronger than concentrated sulfuric acid, for example, SO.sub.3 or SO.sub.3 /air mixtures, oleum, chlorosulfonic acid, and the like. The addition of adduct formers for the sulfating agent or the presence of solvents are not required in the process. The preferred sulfating agent is chlorosulfonic acid. The mol ratio between the alkoxylate and the sulfating agent is advantageously chosen in the range of from 1:1.0 to 1:1.2, particularly in the range of from 1:1.02 to 1:1.1.The sulfation reaction can be carried out continuously or discontinuously. The reaction times lie between fractions of seconds to about 20 minutes, depending upon the sulfating agent and/or sulfating apparatus used. Particularly short reaction times are attained if the reaction is carried out with very strong sulfating agents, such as SO.sub.3 /air mixtures, in modern short-time sulfation reactors which operate by the split-ring or falling film principle.The products of the process have a substantially higher degree of sulfation than the products obtained by the sulfation of technical ethylene oxide adducts of secondary alcohols. They have, without further processing, very good surface-active properties and are superior, particularly in regard to their wetting action, to the known commercial sulfated adducts of ethylene oxide to primary alcohols.The advantages attainable with the invention consist primarily in that as a raw material source for surface-active, water-soluble sulfates, secondary alcohols have been made available. Particularly those secondary alcohols which are easily obtainable by paraffin oxidation in the presence of the above-named oxidation catalysts to produce secondary alcohols with statistically distributed hydroxyl groups. These alcohols are converted by alkoxylation to the substances suitable for sulfation. Thus, these petrochemical raw materials can form the basis for the desired surface-active substances. Anionic active derivatives of secondary alcohols were up to now technically not producible by a simple way although secondary alcohols have been produced for some time on a large scale. The use of secondary alcohols was, therefore, until now limited to the production of non-ionic substances.A further advantage of the process according to the invention can be seen in that the necessary alkoxylation may be carried out without a large expense in regard to catalysts and/or equipment.The following examples are illustrative of the invention without being deemed limitative in any respect.
摘要:
The present invention relates to compositions for the treatment of the skin containing from 1 to 20% by weight of a polyhydroxyalkylamine having the formula ##STR1## wherein R.sub.1 is a member having 3 to 6 carbon atoms selected from the group consisting of dihydroxyalkyl and trihydroxyalkyl, and R.sub.2 and R.sub.3 are members selected from the group consisting of hydrogen, alkyl having from 1 to 4 carbon atoms, hydroxyalkyl having from 2 to 4 carbon atoms and dihydroxyalkyl having from 3 to 4 carbon atoms, and salts thereof, and the remainder up to 100% by weight inert cosmetic excipients; as well as the method of skin treatment.
摘要:
A process for the production of a marbled or mottled cake or bar, particularly of soap, comprising cutting an extruded rope having axially aligned section of different colors, into blanks of the desired dimension, at an angle .alpha. of 75.degree. to 15.degree. to the axis of said extruded rope, stamp molding said blanks with the direction of stamping at an angle .beta. of from 90.degree. to 30.degree. to the cut surfaces of said blank, and recovering a marbled or mottled cake or bar of soap.