Abstract:
A process for producing a bio-based surfactant comprising an alkyl disulphate salt comprises the steps of methanolysis of medium chain length polyhydroxyalkanoic acid (mcl-PHA) to provide hydroxy fatty acid methyl ester monomers (HFAME's), reduction of the HFAME's to provide 1,3 alkyl diols, sulphation of the 1,3 alkyl diols to provide 1,3 alkyl disulphates, and neutralisation of the alkyl disulphates to provide a bio-based surfactant comprising 1,3 alkyl disulphate salt. A bio-based surfactant comprising a mixture of medium chain length 1,3 alkyl disulphate salts is also described.
Abstract:
The present invention relates to a process for the synthesis of organosulfate salts of amino acid esters comprising the steps of reacting at least one lactam with at least 3 carbon atoms in the lactam ring with sulfuric acid in an aqueous solution followed by esterification of the reaction product of the previous step with at least 200 mol-% of at least one alcohol selected from the group consisting of linear alkyl alcohol containing one hydroxy group, branched alkyl alcohol containing one hydroxy group, linear alkylether alcohol containing one hydroxy group, branched alkylether alcohol containing one hydroxy group, phenoxyalkanols containing one hydroxy group, and mixtures thereof; followed optionally removal of water and/or removal of excess alcohol.
Abstract:
A method is disclosed for the production of taurine in high yield by a cyclic process of reacting monoethanolamine, sulfuric acid, and ammonium sulfite in the presence of additives to inhibit the hydrolysis of 2-aminoethyl hydrogen sulfate intermediate. The cyclic process is economical and little waste is generated.
Abstract:
A process for producing a bio-based surfactant comprising an alkyl disulphate salt comprises the steps of methanolysis of medium chain length polyhydroxyalkanoic acid (mcl-PHA) to provide hydroxy fatty acid methyl ester monomers (HFAME's), reduction of the HFAME's to provide 1,3 alkyl diols, sulphation of the 1,3 alkyl diols to provide 1,3 alkyl disulphates, and neutralisation of the alkyl disulphates to provide a bio-based surfactant comprising 1,3 alkyl disulphate salt. A bio-based surfactant comprising a mixture of medium chain length 1,3 alkyl disulphate salts is also described.
Abstract:
There is disclosed a cyclic process for producing taurine from monoethanolamine comprising the steps of: (a) reacting monoethanolamine with ammonium sulfate in the recycling mother liquor to yield monoethanolamine sulfate; (b) reacting the monoethanolamine sulfate with sulfuric acid to form 2-aminoethyl hydrogen sulfate ester; (c) subjecting the 2-aminoethyl hydrogen sulfate ester to a sulfonation reaction with ammonium sulfite to yield taurine and ammonium sulfate; (d) separating the taurine and the ammonium sulfate by means of solid-liquid separation; (e) removing the excess ammonium sulfite from the mother liquor to obtain an aqueous solution comprised of ammonium sulfate and (f) returning the aqueous solution to step (a) to complete the cyclic process.
Abstract:
The present invention is directed to highly-concentrated compositions of salts of alkyl polyalkoxy sulphates, whereby in total at least ⅔ of all alkoxy unit of the alkyl polyalkoxy sulphates are propoxy units.
Abstract:
This invention describes processes to make products by cross metathesis of functionalized or non-functionalized olefins with poly-branched poly-olefins such as terpenes (e.g., farnesene(s), α-farnesene, β-farnesene, β-myrcene, etc.) and compositions made by such methods. More particularly, the present invention relates to methods of making (i) cross metathesis products by a cross metathesis reaction between at least one hydrovinylated olefinic substrate and at least one hydrovinylated cross metathesis substrate in the presence of at least one olefin metathesis catalyst; (ii) cross metathesis products by a cross metathesis reaction between at least one hydrovinylated olefinic substrate and at least one cross metathesis substrate in the presence of at least one olefin metathesis catalyst; and (iii) cross metathesis products by a cross metathesis reaction between at least one olefinic substrate and at least one hydrovinylated cross metathesis substrate in the presence of at least one olefin metathesis catalyst; as well as compositions made by such methods.
Abstract:
The invention relates to a process for preparing alkoxylated alcohols, wherein an alkoxylated alcohol which contains more than 200 parts per million by weight of a Group IA or Group IIA metal ion is contacted with a sulfonic acid. The resulting alkoxylated alcohol may then be sulfated by contacting it with a sulfating agent.
Abstract:
A production process of a fluorosulfuric acid aromatic-ring ester according to the present invention includes reaction of an aromatic-ring hydroxyl compound with sulfuryl fluoride (SO2F2) in the presence of a tertiary amine except pyridine and methylpyridine. The sulfuryl fluoride, used as the reactant in the production process according to the present invention, is widely adapted as a fumigant and is easily available on a large scale. Further, the target compound can be obtained rapidly with a high yield under moderate reaction conditions in the production process according to the present invention. In this way, all of the prior art problems can be solved in the production process according to the present invention. The production process according to the present invention is thus particularly useful for industrial production of the fluorosulfuric acid aromatic-ring ester.
Abstract translation:根据本发明的氟代硫酸芳环酯的制备方法包括在除吡啶和甲基吡啶之外的叔胺存在下,芳环羟基化合物与硫酰氟(SO 2 F 2)的反应。 在根据本发明的生产方法中用作反应物的硫酰氟被广泛地用作熏蒸剂,并且容易获得大量。 此外,在本发明的制造方法中,在中等反应条件下,可以快速获得目标化合物。 以这种方式,可以在根据本发明的制造方法中解决所有现有技术问题。 因此,本发明的制造方法特别适用于氟代硫酸芳香环酯的工业化生产。
Abstract:
A method is disclosed for manufacturing surfactants for utilization in petroleum industry operations. The method comprises providing a bio-lipid. The bio-lipid can include one or more medium-chain or long-chain fatty acids, such as Lauric acid, Myristic acid, Palmitic acid, Stearic acid, Palmitoleic acid, Oleic acid, Ricinoleic acid, Vaccenic acid, Linoleic acid, Alpha-Linoleic acid, or Gamma-Linolenic acid. Fatty acid alkyl esters are produced by reacting the bio-lipid with a low-molecular weight alcohol. The fatty acid alkyl esters are reduced to a fatty alcohol. The fatty alcohol is dimerized to form a Guerbet alcohol, which is a precursor to producing surfactant for utilization in a petroleum industry operation, such as an enhanced oil recovery process.