Abstract:
A power control system comprises a plurality of POL regulators, at least one serial data bus operatively connecting the plurality of POL regulators, and a system controller connected to the serial data bus and adapted to send and receive digital data to and from the plurality of POL regulators. The serial data bus further comprises a first data bus carrying programming and control information between the system controller and the plurality of POL regulators. The serial data bus may also include a second data bus carrying fault management information between the system controller and the plurality of POL regulators. The power control may also include a front-end regulator providing an intermediate voltage to the plurality of POL regulators on an intermediate voltage bus.
Abstract:
A micro gamma camera having several gamma radiation detection devices adjacent to each other. The detection devices are laid out above an information processing device that processes information output by the detection devices. Each of the detection devices includes: a plurality of detectors positioned adjacent to each other to form a detection plane; a first substrate including a detection plane polarizer and a first signal processor for processing the signal detected by the detection plane; a second substrate placed between the detection plane and the first substrate; a ground plane placed between the first and second substrates; and a third substrate including second and third signal processors.
Abstract:
The invention relates to a process for determining the position of an event with respect to a set of N photodetectors, comprising the following after digitization of the signal output by each photodetector: calculate an uncorrected position of the event, determine the distance of each photodetector from the uncorrected position, calculate a corrected value of the contribution of each photodetector as a function of the distance from P0, calculate a new position P1, as a function of the corrected contributions of the photodetectors and their position. Another purpose of the invention is a device for embodiment of the process.
Abstract:
Process for real time sorting of signals from several semi-conductor detection elements in which: a) during a calibration phase: amplitude data and signal rise time data are established for each event signal, a biparametric detection spectrum with amplitude and rise time data is acquired, a biparametric acceptance window corresponding respectively to an amplitude-rise time correlation is established, and b) during an examination phase: an amplitude, rise time data pair is established in real time for each event signal detected, the events are sorted in real time, selecting the signals according to whether their amplitude and rise time data are or are not within the window.
Abstract:
A power control system comprises a plurality of power control groups, with each group comprising a plurality of individual point-of-load regulators each adapted to provide respective regulated voltage outputs. The point-of-load regulators may be selected for inclusion in a power control groups based on characteristics of loads supplied by the point-of-load regulators. An intermediate bus controller is coupled to each of said power control groups through a serial data bus interface common to each group and an OK status line for each respective group. A front end regulator provides an intermediate bus voltage to each of the plurality of power control groups and to the intermediate bus controller. The plurality of point-of-load regulators of each group each further comprises a respective fault manager adapted to detect fault conditions and selectively communicate notifications of the fault conditions to other ones of the plurality of point-of-load regulators of the group and to the intermediate bus controller. This way, a common response to the fault conditions is taken by the point-of-load regulators of the group and other groups. A method for managing faults in the power control system is also disclosed.
Abstract:
A method and system is provided for programming the digital filter compensation coefficients of a digitally controlled switched mode power supply within a distributed power system. The distributed power system comprises a plurality of point-of-load (POL) regulators each comprising at least one power switch adapted to convey power to a load and a digital controller adapted to control operation of the power switch responsive to a feedback measurement. The digital controller further comprises a digital filter having a transfer function defined by plural filter coefficients. A serial data bus operatively connects each of the plurality of POL regulators. A system controller is connected to the serial data bus and is adapted to communicate digital data to the plurality of POL regulators via the serial data bus. The digital data includes programming data for programming the plural filter coefficients. The system controller further comprises a user interface adapted to receive the programming data therefrom.
Abstract:
A power control system comprises a plurality of point-of-load (POL) regulators each adapted to convey regulated power to a load, a serial data bus operatively connecting the plurality of POL regulators, and a digital power manager connected to the data bus. The digital power manager includes a controller adapted to execute stored instructions to program operational parameters of the plurality of POL regulators via the serial data bus and receive monitoring data from the plurality of POL regulators via the serial data bus. The digital power manager further comprises a user interface, such as an I2C interface, adapted to receive programming data therefrom and send monitoring data thereto. The digital power manager further comprises a non-volatile memory containing a plurality of registers, including a digital power manager configuration register containing data values defining a configuration of the power control system, a POL set-up register containing data values reflecting programming state of one of the POL regulators, a POL monitor register containing data values reflecting status of operating conditions within one of the POL regulators, and a user-definable space. The digital power manager is adapted to program voltage margining of each of the POL regulators.
Abstract:
A switched mode voltage regulator has a digital control system that includes dual digital control loops. The voltage regulator comprises at least one power switch adapted to convey power between respective input and output terminals of the voltage regulator and a digital controller adapted to control operation of the power switches responsive to an output of the voltage regulator. The digital controller further comprises dual digital control loops in which a first control loop provides high speed with lower regulation accuracy and a second control loop has high accuracy with lower speed. Thus, the digital control system provides the advantages of both high speed and high regulation accuracy.
Abstract:
A power control system comprises a plurality of power control groups, with each group comprising a plurality of individual point-of-load regulators each adapted to provide respective regulated voltage outputs. The point-of-load regulators may be selected for inclusion in a power control groups based on characteristics of loads supplied by the point-of-load regulators. An intermediate bus controller is coupled to each of said power control groups through a serial data bus interface common to each group and an OK status line for each respective group. A front end regulator provides an intermediate bus voltage to each of the plurality of power control groups and to the intermediate bus controller. The plurality of point-of-load regulators of each group each further comprises a respective fault manager adapted to detect fault conditions and selectively communicate notifications of the fault conditions to other ones of the plurality of point-of-load regulators of the group and to the intermediate bus controller. This way, a common response to the fault conditions is taken by the point-of-load regulators of the group and other groups. A method for managing faults in the power control system is also disclosed.
Abstract:
A power control system comprises a plurality of power control groups, with each group comprising a plurality of individual point-of-load regulators each adapted to provide respective regulated voltage outputs. The point-of-load regulators may be selected for inclusion in a power control groups based on characteristics of loads supplied by the point-of-load regulators. An intermediate bus controller is coupled to each of said power control groups through a serial data bus interface common to each group and an OK status line for each respective group. A front end regulator provides an intermediate bus voltage to each of the plurality of power control groups and to the intermediate bus controller. The plurality of point-of-load regulators of each group each further comprises a respective fault manager adapted to detect fault conditions and selectively communicate notifications of the fault conditions to other ones of the plurality of point-of-load regulators of the group and to the intermediate bus controller. This way, a common response to the fault conditions is taken by the point-of-load regulators of the group and other groups. A method for managing faults in the power control system is also disclosed.