Abstract:
An apparatus includes a wavelength-selective optical switch able to route light between a first optical port and a plurality of second optical ports. The wavelength-selective optical switch includes a bank of optical wavelength-converters. Each wavelength converter of the bank is able to selectively optically couple an optical data stream on a wavelength-channel between the first optical port and individual ones of the second optical ports.
Abstract:
An apparatus includes a non-solitonic all-optical communication path having serially connected first and second segments. The first segment end-couples to a lumped optical transmitter. The second segment end-couples to a lumped optical receiver. Each segment has a series of spans of transmission optical fibers. The all-optical communication path has an optical phase conjugator that optically end-couples the first segment to the second segment. The optical phase conjugator is positioned away from the path's midpoint.
Abstract:
An apparatus has a waveguide that includes a multiferroic medium. A controller is configured to apply a mechanical strain or a control electric or magnetic field to the multiferroic medium. The multiferroic medium has a dielectric permittivity or magnetic permeability that is responsive to the strain or the control field.
Abstract:
A frequency-conversion method that uses a nonlinear optical process to transfer energy between a surface-plasmon (SP) wave that is guided along an electrically conducting strip and a light beam that is guided along an optical waveguide whose core is adjacent to the electrically conducting strip. A periodic structure spatially modulates the nonlinear susceptibility of the waveguide core with a spatial period that is related to a momentum mismatch in the nonlinear optical process. The spatial modulation provides quasi-phase matching for the SP wave and the light beam and enables efficient energy transfer between them.
Abstract:
An optical frequency converter that uses a nonlinear optical process to transfer energy between a surface-plasmon (SP) wave that is guided along an electrically conducting strip and a light beam that is guided along an optical waveguide whose core is adjacent to the electrically conducting strip. The optical frequency converter has a periodic structure that spatially modulates the nonlinear susceptibility of the waveguide core with a spatial period that is related to a momentum mismatch in the nonlinear optical process. The spatial modulation provides quasi-phase matching for the SP wave and the light beam and enables efficient energy transfer between them.
Abstract:
An apparatus has a waveguide that includes a multiferroic medium. A controller is configured to apply a mechanical strain or a control electric or magnetic field to the multiferroic medium. The multiferroic medium has a dielectric permittivity or magnetic permeability that is responsive to the strain or the control field.
Abstract:
An optical frequency converter that uses a nonlinear optical process to transfer energy between a surface-plasmon (SP) wave that is guided along an electrically conducting strip and a light beam that is guided along an optical waveguide whose core is adjacent to the electrically conducting strip. The optical frequency converter has a periodic structure that spatially modulates the nonlinear susceptibility of the waveguide core with a spatial period that is related to a momentum mismatch in the nonlinear optical process. The spatial modulation provides quasi-phase matching for the SP wave and the light beam and enables efficient energy transfer between them.
Abstract:
A fabrication method produces a mechanically patterned layer of group III-nitride. The method includes providing a crystalline substrate and forming a first layer of a first group III-nitride on a planar surface of the substrate. The first layer has a single polarity and also has a pattern of holes or trenches that expose a portion of the substrate. The method includes then, epitaxially growing a second layer of a second group III-nitride over the first layer and the exposed portion of substrate. The first and second group III-nitrides have different alloy compositions. The method also includes subjecting the second layer to an aqueous solution of base to mechanically pattern the second layer.
Abstract:
An apparatus includes one or more optical couplers, an optical medium, and an optical pump source. The optical medium behaves as a negative refractive index material over a frequency range. The one or more optical couplers are configured to provide first and second optical inputs to the optical medium and to provide an optical output from the optical medium. The optical pump source is coupled by one of the one or more optical couplers to deliver pump light to the optical medium.
Abstract:
A polarization-diverse apparatus includes a polarization-sensitive negative-refractive-index (NRI) medium and a polarization splitter. The polarization splitter is configured to receive an electromagnetic input signal, to direct a first polarization component of the received input signal to a first path segment, and to direct a second polarization component of the received input signal to a separate second path segment. The medium has first and second signal ports. The first port is at an end of the first path segment. The second port is at an end of the second path segment. The medium outputs an altered signal from one of the ports in response to receiving the input signal at the other of the ports. In a preferred embodiment, the medium has an internal optical axis, and the polarizations of the first and second components are oriented relative to that axis so that effect of altering the input signal is enhanced. The two path segments may include polarization-maintaining waveguides.