Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
An uplink dedicated control channel reporting structure includes a plurality of different bit size reports, e.g. 1 bit, 3 bit and 4 bit reports, for reporting a wireless terminal's backlog information of uplink traffic request group queues. Smaller bit size reports are transmitted more frequently than larger reports. A 1 bit request report indicates whether or not there are any MAC frames of information to be communicated in a set of two request group queues. A 3 bit request report indicates an amount of backlog information corresponding to a first set of request group queues and a second set of request group queues. A 4 bit request report indicates an amount of backlog information corresponding to a set of request group queues. The 4 bit request report is capable of reporting information on any of a plurality of uplink traffic channel request group queues being maintained by the wireless terminal.
Abstract:
Techniques for sending control messages are described. In an aspect, assignment messages may be acknowledged based on either linked or dedicated acknowledgement (ACK) resources. A terminal may receive an assignment message from a base station, determine whether to acknowledge the assignment message, and determine ACK resources to use to acknowledge the assignment message. The ACK resources may be linked to a control block on which the assignment message was received, linked to resources given by the assignment message, or assigned to the terminal. The terminal may send the acknowledgement on the ACK resources. In another aspect, a control message may be acknowledged based on ACK resources determined based on the control message or the control block. The ACK resources may be linked to resources assigned by the control message or linked to the control message. The terminal may send an acknowledgement for the control message on the ACK resources.
Abstract:
A transmitter apparatus at a base station transmits program information using a plurality of carriers with at least some of the carriers having different transmit power levels. The carrier associated with the highest transmit power level conveys broadcast information carrying basic program information. A carrier associated with a lower power level conveys broadcast information including enhancement information and/or additional content. The enhancement information and/or additional content may include a higher level of video and/or audio resolution, additional video and/or audio content, support for additional languages, a text stream, and/or advertisements. A wireless terminal tunes, receives and processes the broadcast information. A wireless terminal can recover different levels of resolution of a broadcast program, e.g., a digital video broadcast program, and/or different amounts of additional content, depending upon which carriers are being used.
Abstract:
Systems and methodologies are described that facilitate supporting narrowband and wideband operation within a wideband wireless communication environment. For example, wideband operation can be enhanced by enabling faster communication of information as compared to narrowband operation, transfer of supplemental data available to wideband devices, and the like. Pursuant to another example, timing of information transfer can be scheduled over a plurality of subbands to enable a narrowband device to obtain a set of information over one of the subbands during a set of time intervals, while a wideband device can receive the set of information over the plurality of subbands during a reduced set of time intervals.
Abstract:
Systems and methodologies are described that facilitate scheduling uplink transmissions. For instance, a time sharing scheme can be utilized such that differing mobile devices can be scheduled to transmit during differing time slots; however, it is also contemplated that a static scheme can be employed. Pursuant to an illustration, an interference budget can be combined with a time varying weighting factor associated with a base station; the weighting factor can be predefined and/or adaptively adjusted (e.g., based upon a load balancing mechanism). Moreover, the weighted interference budget can be leveraged for selecting mobile devices for uplink transmission (e.g., based at least in part upon path loss ratios of the mobile devices). Further, disparate interference budgets can be utilized by differing channels of a sector at a particular time. Also, for example, a base station can assign a loading factor to be utilized by wireless terminal(s) for generating channel quality report(s).
Abstract:
Certain aspects of the present disclosure relate to a technique of designing a Media Access Control (MAC) scheduler for uplink communication in high rate wireless data systems, such as Long Term Evolution (LTE) wireless communication systems.
Abstract:
A method is described for transmitting information in a communication channel of a wireless communication system in which the communication channel is divided into a plurality of time slots of equal duration and each of the time slots is further sub-divided into multiple sub-slots or resource units. In one illustrative embodiment, the communication channel is divided into time slots according to a time division multiple access scheme. Each time slot is then further code-multiplexed into one or more sub-slots according to a code division multiple access scheme. Each of the sub-slots is therefore capable of carrying a separately coded transmission within the communication channel so that multiple simultaneous transmissions can occur in any given time slot.
Abstract:
Embodiments of the present disclosure include systems, methods, and devices for managing power consumption in a wireless sensor network. Such embodiments may include a remote server, a wide area network coupled to the remote server, at least one access point device coupled to the remote server through the wide area network, one or more sensors coupled to each other and to the access point and datasinks through the network. Each datasink can be a data coordinator and receive sensor information from the one or more sensors and transmit sensor information to the at least access point. Further, a first set of sensors are configured to be routing sensors and a second set of sensors are configured end point sensors based on a graph theoretic algorithm to reduce transmitting power of each sensor and reduce overall power of the wireless sensor network, and configuring a first operational wireless sensor network.
Abstract:
Systems and methodologies are described that facilitate dividing scheduling algorithms into background and foreground aspects capable of simultaneously servicing a multiplicity of disparate flows in wideband communications networks. The systems provided herein arbitrarily select prospective time horizons, generate optimal bandwidth allocation targets based on a plurality of flows observed by the system, and utilizes the optimal bandwidth targets to assign flows to users over the entirety of the prospective time horizon.