Abstract:
An integrated circuit includes a positive power supply node, a current tracking circuit, and a current mirroring circuit including a plurality of current paths coupled in parallel. The currents of the plurality of current paths mirror a current of the current tracking circuit. The current mirroring circuit is configured to turn off the plurality of current paths one-by-one in response to a reduction in a positive power supply voltage on the positive power supply node. The integrated circuit further includes a charging node receiving a summation current of the plurality of current paths, wherein a voltage on the charging node is configured to increase through a charging of the summation current.
Abstract:
An SRAM device includes: a first group of memory cells connected to a first local bit line and a first local complementary bit line for accessing data nodes thereof; a second group of memory cells connected to a second local bit line and a second local complementary bit line for accessing data nodes thereof; and a global bit line and a global complementary bit line connected to the first and second local bit lines for accessing data nodes of the first and second groups of memory cells, wherein the first local bit line, the first local complementary bit line, the second local bit line, the second local complementary bit line, the global bit line and the global complementary bit line are constructed on a same metallization level in the SRAM device.
Abstract:
An improved SRAM cell and its operating method are disclosed. The SRAM cell comprises at least four original transistors, e.g., a pair of pass-gate transistors and a pair of pull-up transistors. The SRAM cell also comprises a pair of parasitic transistors formed by making contacts to a Pwell underneath a buried insulation layer to make the Pwell a gate terminal; hence the buried insulation layer serves as a gate insulation for the parasitic transistor.
Abstract:
This invention discloses a power supply management circuit which comprises at least one switching circuit coupled between a power supply and a power recipient circuit, and at least one voltage booster circuit coupled between a control circuit and the power recipient circuit, wherein the control circuit is configured to turn on-or-off the switching circuit, and to activate or de-activate the voltage booster circuit.
Abstract:
A semiconductor memory is disclosed, which comprises a plurality of memory cells, at least one high voltage power supply (CVDD) line coupled to the plurality of memory cells for supplying power to the same, and at least one controllable discharging circuit coupled between the CVDD line and a complementary low voltage power supply (ground), wherein only during a write operation the controllable discharging circuit is turned on for discharging the CVDD line.
Abstract:
An improved SRAM cell and its operating method are disclosed. The SRAM cell comprises at least four original transistors, e.g., a pair of pass-gate transistors and a pair of pull-up transistors. The SRAM cell also comprises a pair of parasitic transistors formed by making contacts to a Pwell underneath a buried insulation layer to make the Pwell a gate terminal; hence the buried insulation layer serves as a gate insulation for the parasitic transistor.
Abstract:
A word line decoder comprises a plurality of driver circuits, a plurality of word lines provided at respective outputs of the driver circuits, and a plurality of primary input lines coupled to the driver circuits and oriented in a first direction. The word line decoder also comprises a plurality of secondary input lines coupled to the driver circuits and oriented in the first direction. The word line decoder also comprises a local decode line coupled to each of the primary input lines. The word line decoder also comprises a decode line coupled to the local decode line and oriented in the first direction. A cluster decode line is coupled to the decode line. The word line decoder is configured to select at least one of the word lines based on signals provided by the cluster decode line and the secondary input lines.
Abstract:
An integrated circuit (IC) chip includes a first memory cell array block having a first metal layer containing at least two power lines, and a second memory cell array block containing at least two power lines independent of each other, wherein all the power lines on the first metal layer serving the first memory cell array block do not extend into the second memory cell array block, and all the power lines on the first metal layer serving the second memory cell array block do not extend into the first memory cell array block.
Abstract:
A static random access memory (SRAM) macro includes a first power supply voltage and a second power supply voltage that is different from the first power supply voltage. A precharge control is connected to the second power supply voltage. The precharge control is coupled to a bit line through a bit line precharge. At least one level shifter receives a level shifter input. The level shifter converts the level shifter input having a voltage level closer to the first power supply voltage than the second power supply voltage to a level shifter output having a voltage level closer to the second power supply voltage than the first power supply voltage. The level shifter output is provided to the precharge control.
Abstract:
In some embodiments related to a memory array, a sense amplifier (SA) uses a first power supply, e.g., voltage VDDA, while other circuitry, e.g., signal output logic, uses a second power supply, e.g., voltage VDDB. Various embodiments place the SA and a pair of transferring devices at a local IO row, and a voltage keeper at the main IO section of the same memory array. The SA, the transferring devices, and the voltage keeper, when appropriate, operate together so that the data logic of the circuitry provided by voltage VDDB is the same as the data logic of the circuitry provided by voltage VDDA.